Rhenium/rhenium oxide nanoparticles production using femtosecond pulsed laser ablation in liquid

Rhenium/rhenium oxide nanoparticles production using femtosecond pulsed laser ablation in liquid

In this study, rhenium/rhenium oxide nanoparticles (Re / $ReO_3$ NPs) have been produced for the first time in ultrapure water by using Femtosecond Pulsed Laser Ablation in Liquid (fsPLAL) method. X-Ray Diffraction (XRD) measurements and results obtained for NPs show the existence of well-crystallized peaks and preferred phases. Re NPs have hexagonal structure while $ReO_3$ NPs have the perovskite-like cubic crystal structures. The Re / $ReO_3$ ratio is also determined to be 53 / 47 with ~ 20 nm crystallite size, while pure $ReO_3$ crystallite sizes were measured to be ~ 25 nm. The TEM results have shown that the produced particles have a spherical shape, and particle sizes changes between ~ 20 nm and ~ 60 nm. The crystallite size is similar due to XRD results. Obtained nanoparticles exhibit promising applications for photonic devices with broad bandgap values which have measured to be 4.71 eV for Re / $ReO_3$ NPs mixtureand 4.36 eV for pure $ReO_3$ NPs.

___

  • 1. Stafe MA, Marcu A, and Puscas NN. Pulsed Laser Ablation of Solids: Basics, Theory and Applications: Springer Science & Business Media; 2013.
  • 2. Yang G, Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials: CRC Press; 2012.
  • 3. De Bonis A, Lovaglio T, Galasso A, Santagata A, Teghil R. Iron and iron oxide nanoparticles obtained by ultra-short laser ablation in liquid. Applied Surface Science 2015; 353: 433-438. http://dx.doi.org/10.1016/j.apsusc.2015.06.145
  • 4. Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R et al. A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 2012; 23 (8): 085103. https://doi.org/10.1088/0957- 4484/23/8/085103
  • 5. Awad MA, Hendi AA, Ortashi KM, Elradi DF, Eisa NE et al. Silver nanoparticles biogenic synthesized using an orange peel extract and their use as an anti-bacterial agent. International Journal of Physical Sciences 2014; 9 (3): 34-40. https://doi.org/10.5897/IJPS2013.4080
  • 6. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews 2004; 104 (1): 293-346. https://doi.org/10.1021/cr030698
  • 7. El-Sayed, IH, Huang X, El-Sayed M A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Letters 2005; 5 (5): 829-834. https://doi.org/10.1021/nl050074e
  • 8. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chemical Society Reviews 2008; 37 (9): 1896-1908. https://doi.org/10.1039/B712170A
  • 9. Brust M, Bethell D, Kiely CJ, Schiffrin DJ. Self-assembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 1998; 14 (19): 5425-5429. https://doi.org/10.1021/la980557g
  • 10. Ung T, Liz-Marzan LM, Mulvaney P. Gold nanoparticle thin films. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002; 202 (2): 119-126. https://doi.org/10.1016/S0927-7757(01)01083-4
  • 11. Ouyang J, Chu C-W, Szmanda CR, Ma L, Yang Y. Programmable polymer thin film and non-volatile memory device. Nature Materials, 2004; 3 (12): 918-922. https://doi.org/10.1038/nmat1269
  • 12. Kim YL, Choi H-A, Lee N-S, Son B, Kim HJ et al. RuO 2–ReO 3 composite nanofibers for efficient electrocatalytic responses. Physical Chemistry Chemical Physics 2015; 17 (11): 7435-7442. https://doi.org/10.1039/C4CP05615A
  • 13. Yoo S-J, Chang J-H, Lee J-H, Moon C-K, Wu C-I, et al. Formation of perfect ohmic contact at indium tin oxide/N, N [prime]-di (naphthalene-1-yl)-N, N [prime]-diphenyl-benzidine interface using ReO3. Scientific Reports 2014; 4. https://doi.org/10.1038/srep03902
  • 14. Karan HI, Sasaki K, Kuttiyiel K, Farberow CA, Mavrikakis M et al. Catalytic activity of platinum monolayer on iridium and rhenium alloy nanoparticles for the oxygen reduction reaction. ACS Catalysis 2012; 2 (5): 817-824. https://doi.org/10.1021/cs200592x
  • 15. Taratanov N, Yurkov GY, Koksharov YA, Bouznik V. Preparation and properties of composite materials based on rhenium-containing nanoparticles and micrograins of polytetrafluoroethylene. Inorganic Materials: Applied Research 2011; 2 (2): 118-124. https://doi. org/10.1134/S2075113311020201
  • 16. Ghosh S, Biswas K, Rao C. Core–shell nanoparticles based on an oxide metal: ReO 3@ Au (Ag) and ReO 3@ SiO 2 (TiO 2). Journal of Materials Chemistry 2007; 17 (23): 2412-2417. https://doi.org/10.1039/B701137G
  • 17. Chong, Y.Y., W.Y. Chow, and W.Y. Fan, Preparation of rhenium nanoparticles via pulsed-laser decomposition and catalytic studies. Journal of Colloid and Interface Science 2012; 369 (1):164-169. https://doi.org/10.1016/j.jcis.2011.12.015
  • 18. Ayvalı T, Lecante P, Fazzini P-F, Gillet A, Philippot K et al. Facile synthesis of ultra-small rhenium nanoparticles. Chemical Communications 2014; 50 (74): 10809-10811. https://doi.org/10.1039/C4CC04816D
  • 19. Bedia J, Calvo L, Lemus J, Quintanilla A, Casas JA et al. Colloidal and microemulsion synthesis of rhenium nanoparticles in aqueous medium. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2015; 469: 202-210. https://doi.org/10.1016/j.colsurfa.2015.01.031
  • 20. Zinn AA. Inventor; Google Patents, assignee. Rhenium Nanoparticles 2010.
  • 21. Rojas J, Castano CH. Synthesis of rhenium oxide nanoparticles (Re x O y) by gamma irradiation. Radiation Physics and Chemistry 2014; 99: 1-5. https://doi.org/10.1016/j.radphyschem.2014.01.022
  • 22. Tang N, Tu W. Synthesis of magnetic rhenium sulfide composite nanoparticles. Journal of Magnetism and Magnetic Materials 2009; 321 (19): 3311-3317. https://doi.org/10.1016/j.jmmm.2009.06.049
  • 23. Tu W, Denizot B. Synthesis of small-sized rhenium sulfide colloidal nanoparticles. Journal of Colloid and Interface Science 2007; 310 (1): 167-170. https://doi.org/10.1016/j.jcis.2007.01.054
  • 24. Ohkubo M, Fukai K, Kohji M, Iwata N, Yamamoto H. Preparation of conductive ReO3 thin films. Superconductor Science and Technology 2002; 15 (12): 1778. https://doi.org/10.1088/0953-2048/15/12/332
  • 25. Pearsall T, Lee C. Electronic transport in Re O 3: dc conductivity and Hall effect. Physical Review B 1974; 10 (6): 2190. https://doi. org/10.1103/PhysRevB.10.2190
  • 26. Biswas K, Rao C. Metallic ReO3 nanoparticles. The Journal of Physical Chemistry B 2006; 110 (2): 842-845. https://doi.org/10.1021/ jp055670b
  • 27. Mocatta D, Cohen G, Schattner J, Millo O, Rabani E et al. Heavily doped semiconductor nanocrystal quantum dots. Science 2011; 332 (6025): 77-81. 10.1126/science.1196321
  • 28. Kim J-B, Lee J-H, Moon C-K, Kim J-J. Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle. Applied Physics Letters 2014; 104 (7): 073301. https://doi.org/10.1063/1.4865765
  • 29. Gündoğdu Y, Kepceoğlu A, Gezgin SY, Küçükçelebi H, Kılıç HŞ. Femtosecond laser ablation synthesis of nanoparticles and nano-hybrides in ethanol medium. Materials Today: Proceedings 2019; 18: 1803-1810. https://doi.org/10.1016/j.matpr.2019.06.667
  • 30. Zhigilei LV, Lin Z, Ivanov DS. Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion. The Journal of Physical Chemistry C 2009; 113 (27): 11892-11906. https://doi.org/10.1021/jp902294m
  • 31. Salminen T. Production of nanomaterials by pulsed laser ablation. Tampereen teknillinen yliopisto. Julkaisu-Tampere University of Technology 2013.
  • 32. Jørgensen J-E, Jorgensen J, Batlogg B, Remeika J, Axe J. Order parameter and critical exponent for the pressure-induced phase transitions in ReO3. Physical Review B 1986; 33: 4793-4798. https://doi.org/10.1103/PhysRevB.33.4793
  • 33. Holzwarth U, Gibson N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nature Nanotechnology 2011; 6 (9): 534-534. https:// doi.org/10.1038/nnano.2011.145
  • 34. Jeong Y-K, Lee Y M, Yun J, Mazur T, Kim M et al. Tunable photoluminescence across the visible spectrum and photocatalytic activity of mixed-valence rhenium oxide nanoparticles. Journal of the American Chemical Society 2017; 139 (42): 15088-15093. https://doi.org/10.1021/jacs.7b07494
  • 35. Ghosh S, Lu HC, Cho SH, Maruvada T, Price MC et al. Colloidal ReO3 nanocrystals: extra re d-electron instigating a plasmonic response. Journal of the American Chemical Society 2019; 141 (41): 16331-16343. https://doi.org/10.1021/jacs.9b06938
  • 36. Liu W, Kosareva O, Golubtsov IS, Iwasaki A, Becker A et al. Femtosecond laser pulse filamentation versus optical breakdown in H2O. Applied Physics B 2003; 76 (3): 215-229. https://doi.org/10.1007/s00340-002-1087-1
  • 37. Besner S, Kabashin AV, Winnik FM, Meunier M. Synthesis of size-tunable polymer-protected gold nanoparticles by femtosecond laserbased ablation and seed growth. The Journal of Physical Chemistry C 2009; 113 (22): 9526-9531. https://doi.org/10.1021/jp809275v
  • 38. Tauc J, Grigorovici R and Vancu A. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b) 1966; 15 (2): 627-637. https://doi.org/10.1002/pssb.19660150224
  • 39. Yıldırım M, Özel F, Sarılmaz A, Aljabour A, Patır İH. Investigation of structural, optical and dielectrical properties of Cu2WS4 thin film. Journal of Materials Science: Materials in Electronics 2017; 28 (9): 6712-6721. 10.1007/s10854-017-6365-0
  • 40. Yıldırım M, Aljabour A, Sarılmaz A, Özel F. Investigation of optical framework of chalcostibite nanocrystal thin films: An insight into refractive index dispersion, optical band gap and single-oscillator parameters. Journal of Alloys and Compounds 2017; 722: 420-426. https://doi.org/10.1016/j.jallcom.2017.06.157
  • 41. Kundu S, Ma L, Dai W, Chen Y, Sinyukov A M et al. Polymer encapsulated self-assemblies of ultrasmall rhenium nanoparticles: catalysis and SERS applications. ACS Sustainable Chemistry & Engineering 2017; 5 (11): 10186-10198. https://doi.org/10.1021/acssuschemeng.7b02175
  • 42. Revina A, Kuznetsov MA, Chekmarev AM, Boyakov EE, Zolotarevskii V. Synthesis and physicochemical properties of rhenium nanoparticles. Protection of Metals and Physical Chemistry of Surfaces 2018; 54 (1): 43-50. https://doi.org/10.1134/S2070205118010112