Predicting the potential distribution area of Solidago ×niederederi (Asteraceae)

Predicting the potential distribution area of Solidago ×niederederi (Asteraceae)

In this study, we aimed to investigate the potential distribution area of Solidago ×niederederi, a natural hybrid betweenNorth American S. canadensis and European S. virgaurea, in Central and East Europe using the MAXENT modeling approach. Thefinal MAXENT model was constructed based on 83 occurrence records from Austria, Poland, Lithuania, and Latvia and six abioticenvironmental variables. The jackknife test revealed that annual temperature range, mean temperature of wettest quarter, and minimumtemperature of coldest month had the highest gain for the training and test data when used alone, whereas precipitation seasonality,precipitation of coldest quarter, and precipitation of warmest quarter reduced the gain the most when excluded from the model and thuscontributed the most information not presented with the other variables. A high probability of occurrence (>0.6) for S. ×niederederi wasfound in 12 countries, namely Austria, Belarus, the Czech Republic, Germany, Hungary, Italy, Lithuania, Poland, Russia (KaliningradOblast), Slovenia, Slovakia, and Ukraine. Our results showed in which areas the hybrid may be established under the European temperateclimatic conditions; however, we do not indicate which areas exactly may be under invasion by the hybrid because such a statementneeds population dynamic data for proper investigation. To prevent the negative impact of S. ×niederederi on native S. virgaurea (i.e.competition for pollinators and introgression) we suggest that it should be controlled first in areas of high probability of occurrence,especially in Lithuania, Kaliningrad Oblast, Slovakia, Poland, and Austria, where the areas of high probability of hybrid occurrenceaccount for more than 5% of the territory concerned.

___

  • Ashcroft MB, French KO, Chisholm LA (2010). An evaluation of environmental factors affecting species distributions. Ecol Model 222: 524-531.
  • Ayres DR, Strong DR (2001). Origin and genetic diversity of Spartina anglica (Poaceae) using nuclear DNA markers. Am J Bot 88: 1863-1867.
  • Baldwin RA (2009). Use of maximum entropy modelling in wildlife research. Entropy 11: 854-866.
  • Burton R (1980). Solidago ×niederederi Khek in Britain. Watsonia 13: 123-124.
  • Daehler CC, Carino DA (2001). Hybridization between native and alien plants and its consequences. In: Lockwood JL, McKinney ML, editors. Biotic Homogenization. New York, NY, USA: Kluwer Academic/Plenum Publishers, pp. 81-102.
  • de Araújo CB, Marcondes-Machado LO, Costa GC (2014). The importance of biotic interactions in species distribution models: a test of the Eltonian noise hypothesis using parrots. J Biogeogr 41: 513-523.
  • Fourcade Y, Engler JO, Rödder D, Secondi J (2014). Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One 9: e97122.
  • Greuter W (2006) onward (continuously updated). Compositae (pro parte majore). In: Greuter W, Raab-Straube E von, editors. Compositae, Euro+Med Plantbase – the information resource for Euro-Mediterranean plant diversity. Website: http://ww2. bgbm.org [accessed 5 March 2017].
  • Gudžinskas Z, Petrulaitis L (2016). New alien plant species recorded in the southern regions of Latvia. Botanica Lithuanica 22: 153- 160.
  • Gudžinskas Z, Žalneravičius E (2016). Solidago ×snarskisii nothosp. nov. (Asteraceae) from Lithuania and its position in the infrageneric classification of the genus. Phytotaxa 253: 147- 155.
  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25: 1965-1978.
  • Holzmann I, Agostini I, DeMatteo K, Areta JI, Merino ML, Di Bitetti MS (2015). Using species distribution modelling to assess factors that determine the distribution of two parapatric howlers (Alouatta spp.) in South America. Int J Primatol 36: 18-32.
  • Kabuce N, Priede A (2010). NOBANIS – Invasive Alien Species Fact Sheet – Solidago canadensis. Online Database of the North European and Baltic Network on Invasive Alien Species – NOBANIS. Website: http://www.nobanis.org [accessed 5 March 2017].
  • Karpavičienė B, Radušienė J (2016). Morphological and anatomical characterization of Solidago ×niederederi and other sympatric Solidago species. Weed Sci 64: 61-70.
  • Kiełtyk P, Mirek Z (2014). Taxonomy of the Solidago virgaurea group (Asteraceae) in Poland, with special reference to variability along an altitudinal gradient. Folia Geobot 49: 259-282.
  • Mayorov SR, Bochkin VD, Nasimovich YuA, Shcherbakov AV (2012). Adventivnaya flora Moskvy i Moskovskoi oblastii. Moscow, Russia: KMK (in Russian).
  • Migdałek G, Kolczyk J, Pliszko A, Kościńska-Pająk M, Słomka A (2014). Reduced pollen viability and achene development in Solidago ×niederederi Khek from Poland. Acta Soc Bot Pol 83: 251-255.
  • Nilsson A (1976). Spontana gullrishybrider (Solidago canadensis × virgaurea) i Sverige och Danmark. Svensk Botanisk Tidskrift 70: 7-16 (in Swedish).
  • Pagitz K, Lechner-Pagitz C (2015). Neues zur Neophytenflora Nordund Osttirols (Österreich). Neilreichia 7: 29-44 (in German). Pattison RR, Mack RN (2008). Potential distribution of the invasive tree Triadica sebifera (Euphorbiaceae) in the United States: evaluating CLIMEX predictions with field trials. Glob Change Biol 14: 813-826.
  • Phillips SJ, Anderson RP, Schapire RE (2006). Maximum entropy modeling of species geographic distributions. Ecol Model 190: 231-259.
  • Phillips SJ, Dudík M (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161-175.
  • Pliszko A (2013). A new locality of Solidago ×niederederi Khek (Asteraceae) in Poland. Biodiversity Research and Conservation 29: 57-62.
  • Pliszko A (2015). Neotypification of Solidago ×niederederi (Asteraceae). Phytotaxa 230: 297-298.
  • Pliszko A, Zalewska-Gałosz J (2016). Molecular evidence for hybridization between invasive Solidago canadensis and native S. virgaurea. Biol Invasions 18: 3103-3108.
  • Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamson M, Kirschner J (2004). Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53: 131-143.
  • Qin Z, Zhang J, DiTommaso A, Wang RL, Wu RS (2015). Predicting invasions of Wedelia trilobata (L.) Hitchc. with Maxent and GARP models. J Plant Res 128: 763-775.
  • Slavík B (2004). Solidago L. – zlotobýl. In: Slavík B, Štěpánková J, editors. Květena České Republiky 7. Prague, Czech Republic: Academia, pp 114-123 (in Czech).
  • Stace CA, Preston CD, Pearman DA (2015). Hybrid Flora of the British Isles. Bristol, UK: Botanical Society of Britain and Ireland.
  • Sunding P (1989). Naturaliserte Solidago-(gullris-) arter i Norge. Blyttia 47: 23-27 (in Norwegian).
  • Viltrakytė J, Karpavičienė B (2014). Solidago ×niederederi paplitimo ir generatyvinio dauginimosi galimybių tyrimai. Studentų mokslinė praktika 2014, konferencijos pranešimų santraukos, II dalis. Vilnius, Lithuania: Lietuvos mokslo taryba, pp. 75-77 (in Lithuanian).
  • Wang Y, Xu Z (2016). Where are the alien species? Predictions of global plant species invasions under current environmental conditions and the human footprint. Pol J Environ Stud 25: 1729-1738.
  • Wisz M, Hijmans SRJ, Li J, Peterson AT, Graham CH, Guisan A; NCEAS Predicting Species Distributions Working Group (2008). Effects of sample size on the performance of species distribution models. Divers Distrib 14: 763-773.
  • Woodward FI, Williams BG (1987). Climate and plant distribution at global and local scales. Vegetatio 69: 189-197.
  • Xu Z, Peng H, Feng Z, Abdulsalih N (2014). Predicting current and future invasion of Solidago canadensis: a case study from China. Pol J Ecol 62: 263-271.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK