Comparison of the genome size, endoreduplication, and ISSR marker polymorphism in eight Lotus (Fabaceae) species

Comparison of the genome size, endoreduplication, and ISSR marker polymorphism in eight Lotus (Fabaceae) species

Several species within the genusLotusare important forage crops, and many are endangered or rare. Despite the high geneticdiversity of the genus, identification ofLotusspecies is problematic because of the limited number of reliable morphological markers. Insearch of a quick, inexpensive, and steady method for species identification, genome size and cell cycle/endoreduplication intensity of14 accessions belonging to eightLotusspecies were estimated by flow cytometry. ISSR-PCR was also applied to find sensitive molecularmarkers for genetic diversity estimation. Genome size estimation revealed thatLotusspecies possess very small genomes and thischaracteristic enables the identification of five out of eight species. However, a flow cytometric study of cell ploidy/endopolyploidy inseeds and seedlings enabled us also to distinguish the remaining species. Thus, it is proposed here that combined flow cytometric analyses(the estimation of genome size and cell cycle/endoreduplication pattern) can be applied for screening ofLotusspecies. Nonetheless, ISSRmarkers provided a more precise identification of studied accessions, including detection of genetic diversity within a species. Mostof the tested primers revealed polymorphism between species, and three primers, (GACA) 4 , (CA) 7 G, and (CTC) 4 RC, also revealedpolymorphism between accessions within a species. The ISSR markers revealed high polymorphism between eightLotusspecies andlow intraspecific variation between accessions within the same species ( L. maritimusandL. uliginosus ).

___

  • Alem D, Narancio R, Dellavalle PD, Rebuffo M, Zarza R, Rizza MD (2011). Molecular characterization of Lotus corniculatus cultivars using transferable microsatellite markers. Cienc Investig Agrar 38: 453-461.
  • Allan GJ, Francisco-Ortega J, Santos-Guerra A, Boerner E, Zimmer EA (2004). Molecular phylogenetic evidence for the geographic origin and classification of Canary Island Lotus (Fabaceae: Loteae). Mol Phylogenet Evol 32: 123-138.
  • Allan GJ, Porter JM (2000). Tribal delimitation and phylogenetic relationships of Loteae and Coronilleae (Faboideae: Fabaceae) with special reference to Lotus : evidence from nuclear ribosomal ITS sequences. Am J Bot 87: 1871-1881.
  • Aragane M, Watanabe D, Nakajima J, Yoshida M, Yoshizawa M, Abe T, Nishiyama R, Suzuki J, Moriyasu T, Nakae D et al. (2014). Rapid identification of a narcotic plant Papaver bracteatum using flow cytometry. J Nat Med 68: 677-685.
  • Bainard JD, Bainard LD, Henry TA, Fazekas AJ, Newmaster SG (2012). A multivariate analysis of variation in genome size and endoreduplication in angiosperms reveals strong phylogenetic signal and association with phenotypic traits. New Phytol 196: 1240-1250.
  • Barow M, Meister A (2003). Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ 26: 571-584.
  • Bennett MD, Leitch IJ (2012). Plant DNA C-Values Database (Release 6.0, December 2012). Kew, UK: Royal Botanic Gardens. Available online at http://data.kew.org/cvalues/. Blair DA, Peterson RL, Bowley SR (1988). Nuclear DNA content in root cells of Lotus and Trifolium colonized by the VAM fungus, Glomus versiforme . New Phytol 109: 167-170.
  • Campos LP, Raelson JV, Grant WF (1994). Genome relationships among Lotus species based on random amplified polymorphic DNA (RAPD). Theor Appl Genet 88: 417-422.
  • Chen SY, Dai TX, Chang YT, Wang SS, Ou SL, Chuang WL, Cheng CY, Lin YH, Lin LY, Ku HM (2013). Genetic diversity among Ocimum species based on ISSR, RAPD and SRAP markers. Australian Journal of Crop Science 7: 1463-1471.
  • Cichorz S, Gośka M, Litwiniec A (2014). Miscanthus : genetic diversity and genotype identification using ISSR and RAPD markers. Mol Biotechnol 56: 911-924.
  • Drobná J (2010). Morphological variation in natural populations of Lotus corniculatus in association to geographical parameters of collecting sites. Biologia 65: 213-218.
  • Dzialuk A, Chybicki I, Welc M, Sliwinska E, Burczyk J (2007). Presence of triploids among oak species. Ann Bot-London 99: 959-964.
  • Escaray FJ, Menendez AB, Gárriz A, Pieckenstain FL, Estrella MJ, Castagno LN, Carrasco P, Sanjuán J, Ruiz OA (2012). Ecological and agronomic importance of the plant genus Lotus . Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Sci 182: 121-133.
  • Ferreira J, Pedrosa-Harand A (2014). Lotus cytogenetics. In: Tabata S, Stougaard J, editors. The Lotus japonicus Genome. Compendium of Plant Genomes. Berlin, Germany: Springer-Verlag, pp. 9-20.
  • Galbraith DW, Harkins KR, Knapp S (1991). Systemic endopolyploidy in Arabidopsis thaliana . Plant Physiol 96: 985-989.
  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983). Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049-1051.
  • Gasmanová N, Labeda A, Doleželová I, Cohen T, Pavliček T, Fahima T, Nevo E (2007). Genome size variation of Lotus peregrinus at “Evolution Canyon” I Microsite, Lower Nahal Oren, Mt. Carmel, Israel. Acta Biol Cracov Bot 49: 39-46.
  • Ghislain M, Zhang D, Fajardo D, Huamán Z, Hijmans RJ (1999). Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genet Resour Crop Ev 46: 547-555.
  • González-Sama A, Coba de la Peña T, Kevei Z, Mergaert P, Lucas MM, de Felipe MR, Kondorosi E, Pueyo JJ (2006). Nuclear DNA endoreduplication and expression of the mitotic inhibitor Ccs52 associated to determinate and lupinoid nodule organogenesis. Mol Plant Microbe In 19: 173-180.
  • Grant WF, Small E (1996). The origin of the Lotus corniculatus (Fabaceae) complex: a synthesis of diverse evidence. Can J Bot 74: 975-989.
  • IUCN (2015). The IUCN Red List of Threatened Species 2015– 4. Gland, Switzerland: IUCN. Available online at www. iucnredlist.org (accessed 18 December 2015).
  • Jiang Q, Gresshoff PM (1997). Classical and molecular genetics of the model legume Lotus japonicus. Mol Plant Microbe In 10: 59-68.
  • Jones Q, Earle FR (1966). Chemical analyses of seeds II: oil and protein content of 759 species. Econ Bot 20: 127-155.
  • Kawaguchi M, Motomura T, Imaizumi-Anraku H, Akato S, Kawasaki S (2001). Providing the basis for genomics in Lotus japonicus : the accessions Miyakojima and Gifu are appropriate crossing partners for genetic analyses. Mol Genet Genomics 266: 157-166.
  • Kocová V, Kolarčik V, Straková N, Mártonfi P (2014). Endopolyploidy patterns in organs of Trifolium species (Fabaceae). Acta Biol Cracov Bot 56: 111-120.
  • Kocová V, Mártonfi P (2011). Endopolyploidy in Trifolium pratense L. Caryologia 64: 419-426.
  • Koopman WJM (2000). Identifying lettuce species ( Lactuca subsect. Lactuca , Asteraceae): practical application of flow cytometry. Euphytica 116: 151-159.
  • Kramina TE (2013). Genetic variation and hybridization between Lotus corniculatus L. and L. stepposus Kramina (Leguminosae) in Russia and Ukraine: evidence from ISSR marker patterns and morphology. Wulfenia 20: 81-100.
  • Kramina TE, Degtjareva GV, Meschersky IG (2012). Analysis of hybridization between tetraploid Lotus corniculatus and diploid Lotus stepposus (Fabaceae-Loteae): morphological and molecular aspects. Plant Syst Evol 298: 629-644.
  • Lemontey C, Mousset-Déclas C, Munier-Jolain N, Boutin JP (2000). Maternal genotype influences pea seed size by controlling both mitotic activity during early embryogenesis and final endoreduplication level/cotyledon cell size in mature seed. J Exp Bot 51: 167-175.
  • Leong-Škorničková J, Šída O, Jarolímová V, Sabu M, Fér T, Trávníček P, Suda J (2007). Chromosome numbers and genome size variation in Indian species Curcuma (Zingiberaceae). Ann Bot-London 100: 505-526.
  • Lukaszewska E, Sliwinska E (2007). Most organs of sugar-beet ( Beta vulgaris L.) plants at the vegetative and reproductive stages of development are polysomatic. Sex Plant Reprod 20: 99-10.
  • Melchiorre M, Quero GE, Parola R, Racca R, Trippi VS, Lascano R (2009). Physiological characterization of four model Lotus diploid genotypes: L. japonicus (MG20 and Gigu), L. filicaulis , and L. burttii under salt stress. Plant Sci 177: 618-628.
  • Mishiba K, Ando T, Mii M, Watanabe H, Kokubun H, Hashimoto G, Marchesi E (2000). Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu Jussieu (Solanaceae). Ann Bot-London 85: 665-673.
  • Morozowska M, Czarna A, Jędrzejczyk I, Bocianowski J (2015). Genome size, leaf, fruit and seed traits – taxonomic tools for species identification in the genus Nasturtium R. Br. Acta Biol Cracov Bot 57: 114-124.
  • Nei M, Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. P Natl Acad Sci USA 76: 5269-5273.
  • Raelson JV, Grant WF (1988). Evaluation of hypotheses concerning the origin of Lotus corniculatus (Fabaceae) using isoenzyme data. Theor Appl Genet 76: 267-276.
  • Rewers M, Jedrzejczyk I (2016). Genetic characterization of Ocimum genus using flow cytometry and inter-simple sequence repeat markers. Ind Crop Prod 91: 142-151.
  • Rewers M, Sadowski J, Sliwinska E (2009). Endoreduplication in cucumber ( Cucumis sativus ) seeds during development, after processing and storage, and during germination. Ann Appl Biol 155: 431-438.
  • Rewers M, Sliwinska E (2012). Endoreduplication intensity as a marker of seed developmental stage in the Fabaceae. Cytometry 81: 1067-1075.
  • Rewers M, Sliwinska E (2014). Endoreduplication in germinating embryo and young seedling is related to the type of seedling establishment but is not coupled with superoxide radical accumulation. J Exp Bot 65: 4385-4396.
  • Sliwinska E, Lukaszewska E (2005). Polysomaty in growing in vitro sugar-beet ( Beta vulgaris L.) seedlings of different ploidy level. Plant Sci 168: 1067-1074.
  • Sliwinska E, Mathur J, Bewley JD (2012). Synchronously developing collet hairs in Arabidopsis thaliana provide an easily accessible system for studying nuclear dynamics and endoreduplication. J Exp Bot 63: 4165-4178.
  • Sliwinska E, Thiem B (2007). Genome size stability in six medicinal plant species propagated in vitro . Biol Plantarum 51: 556-558.
  • Soltis DE, Soltis PS, Bennett MD, Leich IJ (2003). Evolution of genome size in the angiosperms. Am J Bot 90: 1596-1603.
  • Somaroo BH, Grant WF (1971). Interspecific hybridization between diploid species of Lotus (Leguminosae). Genetica 42: 353-367.
  • Straková N, Kocová V, Kolarčik V, Mártonfi P (2014). Endopolyploidy in organs of Trifolium pratense L. in different ontogenic stages. Caryologia 67: 116-123.
  • Suzaki T, Ito M, Yoro E, Sato S, Hirakawa H, Takeda N, Kawaguchi M (2014). Endoreduplication-mediated initiation of symbiotic organ development in Lotus japonicus . Development 141: 2441-2445.
  • Tanaka H, Chotekajorn A, Kai S, Ishigaki G, Hashiguchi M, Akashi R (2016). Determination of genome size, chromosome number, and genetic variation using inter-simple sequence repeat markers in Lotus spp. Cytologia 81: 95-102.
  • Van de Peer Y, De Wachter Y (1994). TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10: 569-570.
  • Wang HZ, Feng SG, Lu JJ, Shi NN, Liu JJ (2009). Phylogenetic study and molecular identification of 31 Dendrobium species using inter-simple sequence repeat (ISSR) markers. Sci Hortic- Amsterdam 122: 440-447.
  • Wernsman EA, Keim WF, Davis RL (1964). Meiotic behavior in two Lotus species. Crop Sci 4: 483-486.