The potential use of Drosophila as an in vivo model organism for COVID-19-related research: a review

The potential use of Drosophila as an in vivo model organism for COVID-19-related research: a review

The world urgently needs effective antiviral approaches against emerging viruses, as shown by the coronavirus disease 2019 (COVID-19) pandemic, which has become an exponentially growing health crisis. Scientists from diverse backgrounds have directed their efforts towards identifying key features of SARS-CoV-2 and clinical manifestations of COVID-19 infection. Reports of more transmissible variants of SARS-CoV-2 also raise concerns over the possibility of an explosive trajectory of the pandemic, so scientific attention should focus on developing new weapons to help win the fight against coronaviruses that may undergo further mutations in the future. Drosophila melanogaster offers a powerful and potential in vivo model that can significantly increase the efficiency of drug screening for viral and bacterial infections. Thanks to its genes with functional human homologs, Drosophila could play a significant role in such gene-editing studies geared towards designing vaccines and antiviral drugs for COVID-19. It can also help rectify current drawbacks of CRISPR-based therapeutics like off-target effects and delivery issues, representing another momentous step forward in healthcare. Here I present an overview of recent literature and the current state of knowledge, explaining how it can open up new avenues for Drosophila in our battle against infectious diseases.

___

  • Abbott TR, Dhamdhere G, Liu Y, Lin X, Goudy L et al. (2020). Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell 181: 865-876.e12.
  • Ackerman CM, Myhrvold C, Thakku SG, Freije CA, Metsky HC et al. (2020). Massively multiplexed nucleic acid detection with Cas13. Nature 582: 277-282.
  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD et al. (2000). The genome sequence of Drosophila melanogaster. Science 287: 2185-2195.
  • Adamson A, LaJeunesse D (2012). A study of Epstein-Barr Virus BRLF1 activity in a Drosophila model system. Scientific World Journal 2012: 347597.
  • Andretic R, Kim YC, Jones FS, Han KA, Greenspan RJ (2008). Drosophila D1 dopamine receptor mediates caffeine-induced arousal. Proceedings of the National Academy of Sciences USA 105: 20392-20397.
  • Bao L, Deng W, Gao H, Xiao C, Liu J et al. (2020a). Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv. doi: 10.1101/2020.03.13.990226
  • Bao L, Deng W, Huang B, Gao H, Liu J et al. (2020b). The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583: 830-833.
  • Bassett AR, Tibbit C, Ponting CP, Liu JL (2013). Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Reports 4: 220-228.
  • Battaglia PA, Ponti D, Naim V, Venanzi S, Psaila R et al. (2005). The HIV-Tat protein induces chromosome number aberrations by affecting mitosis. Cell Motility and Cytoskeleton 61: 129-136.
  • Battaglia PA, Zito S, Macchini A, Gigliani F (2001). A Drosophila model of HIV-Tat-related pathogenicity. Journal of Cell Science 114: 2787-2794.
  • Bawage SS, Tiwari PM, Santangelo PJ (2018). Synthetic mRNA expressed Cas13a mitigates RNA virus infections. bioRxiv. doi: 10. 1101/370460
  • Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW et al. (2014). Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nature Biotechnology 32: 1146-1150.
  • Brand AH, Perrimon N (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401-415.
  • Callaway E, Cyranoski D, Mallapaty S, Stoye E, Tollefson J (2020). The coronavirus pandemic in five powerful charts. Nature 579: 482-483.
  • Chan CM, Ma CW, Chan WY, Chan HY(2007). The SARScoronavirus membrane protein induces apoptosis through modulating the Akt survival pathway. Archives of Biochemistry and Biophysics 459: 197-207.
  • Chan JF, Kok KH, Zhu Z, Chu H, To KK et al. (2002). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes and Infections 9: 221-236.
  • Chandrashekar A, Liu J, Martinot AJ, McMahan K, Mercado NB et al. (2020). SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science 369: 812-817.
  • Chen D, Wang M, Zhou S, Zhou Q (2002). HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the pro-apoptotic Bcl-2 relative Bim. The EMBO Journal 21: 6801- 6810.
  • Chen S, Sanjana NE, Zheng K, Shalem O, Lee K et al. (2015). Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160: 1246-1260.
  • Chotkowski HL, Ciota AT, Jia Y, Puig-Basagoiti F, Kramer LD et al. (2008). West Nile virus infection of Drosophila melanogaster induces a protective RNAi response. Virology 377: 197-206.
  • Choudhary E, Sharma R, Kumar Y, Agarwal N (2019). Conditional silencing by CRISPRi reveals the role of DNA gyrase in formation of drug-tolerant persister population in Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology 9: 70.
  • Cordes EJ, Licking-Murray KD, Carlson KA (2013). Differential gene expression related to Nora virus infection of Drosophila melanogaster. Virus Research 175: 95-100.
  • Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz CC, Melguizo-Rodríguez L (2020). SARS-CoV-2 infection: the role of cytokines in COVID-19 disease. Cytokine and Growth Factor Reviews 54: 62-75.
  • Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I et al. (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417: 822-828.
  • De Graeff N, Jongsma KR, Johnston J, Sarah H, Bredenoord AL (2019). The ethics of genome editing in non-human animals: a systematic review of reasons reported in the academic literature. Philosophical Transactions of the Royal Society B: Biological Research 374: 20180106.
  • Demir E (2020). An in vivo study of nanorod, nanosphere, and nanowire forms of titanium dioxide using Drosophila melanogaster: toxicity, cellular uptake, oxidative stress, and DNA damage. Journal of Toxicology and Environmental Health Part A: Current Issues 83:456-469.
  • Dionne MS, Schneider DS (2008). Models of infectious diseases in the fruit fly Drosophila melanogaster. Disease Models and Mechanisms 1: 43-49.
  • Doerflinger M, Forsyth W, Ebert G, Pellegrini M, Herold MJ (2017). CRISPR/Cas9—The ultimate weapon to battle infectious diseases? Cellular Microbiology 19: e12693.
  • Ebina H, Misawa N, Kanemura Y, Koyanagi Y (2013). Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Scientific Reports 3: 2510.
  • Eid A, Mahfouz MM (2016). Genome editing: the road of CRISPR/ Cas9 from bench to clinic. Experimental and Molecular Medicine 48: e265.
  • Ekström JO, Hultmark D (2016). A novel strategy for live detection of viral infection in Drosophila melanogaster. Scientific Reports 6: 26250.
  • Fozouni P, Son S, Díaz de León DM, Knott, GJ, Gray CN et al. (2021). Amplification-free detection of SARS-CoV-2 with CRISPRCas13a and mobile phone microscopy. Cell 184: 323-333.e9.
  • Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL et al. (2019). Programmable inhibition and detection of RNA viruses using Cas13. Molecular Cell 76: 826-837.e11.
  • Fu Y, Fode JA, Khayter C, Maeder ML, Reyon D et al. (2013). Highfrequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology 31: 822-826.
  • Galloway SE (2021). Emergence of SARS-CoV-2 B. 1.1. 7 LineageUnited States, December 29, 2020-January 12, 2021. Morbidity and Mortality Weekly Report (MMWR) 70 (3): 95-99.
  • Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ et al. (2018). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360: 439-444.
  • Gratz SJ, Rubinstein CD, Harrison MM, Wildonger J, O’ConnorGiles KM (2015). CRISPR-Cas9 genome editing in Drosophila.
  • Current Protocols in Molecular Biology 111: 31.2.1-31.2.20. Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK et al. (2014). Highly specific and efficient CRISPR/Cas9- catalyzed homology-directed repair in Drosophila. Genetics 196: 961- 971.
  • Guan W, Ni Z, Hu Y, Liang W, Ou C et al. (2020). Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine 382: 1708-1720.
  • Hamilton AD, Jang JB, Patrick ME, Schulenberg JE, Keyes KM (2019). Age, period and cohort effects in frequent cannabis use among US students: 1991-2018. Addiction (Abingdon, England) 114: 1763-1772.
  • Hao L, Sakurai A, Watanabe T, Sorensen E, Nidom CA et al. (2008). Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature 454: 890-893.
  • Houardet X, Williams TA, Michaud A, Dani P, Isaac RE et al. (1998). The Drosophila melanogaster-related angiotensin-I-converting enzymes ACER and ANCE-distinct enzymic characteristics and alternative expression during pupal development. European Journal of Biochemistry 257: 599-606.
  • Hughes AL, Jin Y, Rando OJ, Struhl K (2012). A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genomewide pattern. Molecular Cell 48: 5-15.
  • Huynh N, Depner N, Larson R, King-Jones K (2020). A versatile toolkit for CRISPR-Cas13-based RNA manipulation in Drosophila. Genome Biology 21: 1-29.
  • Jennings BH (2011). Drosophila-a Versatile Model in Biology & Medicine. Materials Today 14: 190-195.
  • Jiang F, Deng L, Zhang L, Cai Y, Cheung CW et al. (2020). Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). Journal of General Internal Medicine 35: 1545- 1549.
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA et al. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821.
  • Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F (2020). SHERLOCK: nucleic acid detection with CRISPR nucleases. Nature Protocols 15:1311.
  • Khan SY, Vasanth S, Kabir F, Gottsch JD, Khan AO et al. (2016). FOXE3 contributes to Peters anomaly through transcriptional regulation of an autophagy-associated protein termed DNAJB1. Nature Communications 7: 10953.
  • Kim D, Lee JY, Yang JS, Kim JW, Kim VN et al. (20209. The Architecture of SARS-CoV-2 transcriptome. Cell 181: 914-921. e10.
  • Kondo S, Ueda R (2013). Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195: 715-721.
  • Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J et al. (2020). Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell182: 812-827. e19.
  • Korkut C, Ataman B, Ramachandran P, Ashley J, Barria R et al. (2009). Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139: 393-404.
  • Lee H, Fridlind AM, Ackerman AS (2019). An evaluation of sizeresolved cloud microphysics scheme numerics for use with radar observations. Part I: collision-coalescence. Journal of the Atmospheric Science 76: 247-263.
  • Leulier F, Marchal C, Miletich I, Limbourg-Bouchon B, Benarous R et al. (2003). Directed expression of the HIV-1 accessory protein Vpu in Drosophila fat-body cells inhibits Toll-dependent immune responses. EMBO Reports 4: 976-981.
  • Liao FT, Chang CY, Su MT, Kuo WC (2014). Necessity of angiotensinconverting enzyme-related gene for cardiac functions and longevity of Drosophila melanogaster assessed by optical coherence tomography. Journal of Biomedical Optics 19: 011014.
  • Liu H, Mardahl-Dumesnil M, Sweeney ST, O’Kane CJS, Bernstein I(2003). Drosophila paramyosin is important for myoblast fusion and essential for myofibril formation. Journal of Cell Biology 160: 899-908.
  • Liu Y, Ning Z, Chen Y, Guo M, Liu Y et al. (2020). Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582: 557-560.
  • Lloyd TE, Taylor JP (2010). Flightless flies: Drosophila models of neuromuscular disease. Annals of the New York Academy of Sciences 1184: e1-e20.
  • Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB et al. (2017). In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547: 413-418.
  • Mehravar M, Shirazi A, Nazari M, Banan M (2019). Mosaicism in CRISPR/Cas9-mediated genome editing. Developmental Biology 445: 156-162.
  • Mehta A, Merkel OM(2020). Immunogenicity of Cas9 Protein. Journal of Pharmaceutical Sciences109: 62-67.
  • Meltzer H, Marom E, Alyagor I, Mayseless O, Berkun V et al. (2019). Tissue-specific (ts)CRISPR as an efficient strategy for in vivo screening in Drosophila. Nature Communicaitons 10: 2113.
  • Metsky HC, Freije CA, Kosoko-Thoroddsen TSF, Sabeti PC, Myhrvold C (2020). CRISPR-based COVID-19 surveillance using a genomically-comprehensive machine learning approach. bioRxiv. doi: 10.1101/2020.02.26.967026
  • Mohd HA, Al-Tawfiq JA, Memish ZA (2016). Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir. Journal of Virology 13: 87.
  • Nainu F, Shiratsuchi A, Nakanishi Y(2017). Induction of apoptosis and subsequent phagocytosis of virus-infected cells as an antiviral mechanism. Frontiers Immunology 8: 1-11.
  • Ning X, Yu F, Huang Q, Li X, Luo Y et al. (2020). The mental health of neurological doctors and nurses in Hunan Province, China during the initial stages of the COVID-19 outbreak. BMC Psychiatry 20: 436.
  • Ophinni Y, Inoue M, Kotaki T, Kameoka M(2018). CRISPR/Cas9 system targeting regulatory genes of HIV-1 inhibits viral replication in infected T-cell cultures. Scientific Reports 8: 7784.
  • Panayidou S, Ioannidou E, Apidianakis Y (2014). Human pathogenic bacteria, fungi, and viruses in Drosophila: disease modeling, lessons, and shortcomings. Virulence 5: 253-269.
  • Pandey UB, Nichols CD (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacological Reviews 63: 411-436.
  • Port F, Chen HM, Lee T, Bullock SL(2014). Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proceedings of the National Academy of Sciences USA 111: E2967-E2976.
  • Rahimi RA, Nepal K, Cetinbas M, Sadreyev, RI, Luster AD (2020). Distinct functions of tissue-resident and circulating memory Th2 cells in allergic airway disease. Journal of Experimental Medicine 217: e20190865.
  • Ren X, Sun J, Housden BE, Hu Y, Roesel C et al. (2013). Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proceedings of the National Academy of Sciences USA 110: 19012-19017.
  • Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM et al. (2020). Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368: 1012-1015.
  • Roeder T, Isermann K, Kabesch M (2009). Drosophila in asthma research. American Journal of Respiratory and Critical Care Medicine 179: 979-983.
  • Salminen TS, Vale PF(2020). Drosophila as a model system to investigate the effects of mitochondrial variation on innate immunity. Frontiers Immunology 11: 521.
  • Shah AN, Davey, CF, Whitebirch AC, Miller AC, Moens CB(2015). Rapid reverse genetic screening using CRISPR in zebrafish. Nature Methods 12: 535-540.
  • Sharma RP, Chopra VL (1976). Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Developmental Biology 48: 461-465.
  • Shi S, Qin M, Shen B, Cai Y, Liu T et al. (2020). Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiology 5: 802-810.
  • Singh D, Swain DL, MankinJ, Horton DE, Thomas LNet al. (2016). Recent amplification of the North American winter temperature dipole. Journal of Geophysical Research: Atmospheres 121: 9911-9928.
  • Smith W, Andrewes CH, Laidlaw PP(1933). A virus obtained from influenza patients. Lancet 222: 66-68.
  • Soldatov VO, Kubekina MV, Silaeva YY, Bruter AV, Deykin AV (2020). On the way from SARS-CoV-sensitive mice to murine COVID-19 model. Research Results in Pharmacology 6: 1-7.
  • Spresser CR, Carlson KA (2005). Drosophila melanogaster as a complementary system for studying HIV‐1‐related genes and proteins. Journal of Neuroscience Research 80: 451-455.
  • Steinberg R, Shemer-Avni Y, Adler N, Neuman-Silberberg S (2008). Human cytomegalovirus immediate-early-gene expression disrupts embryogenesis intransgenic Drosophila. Transgenic Research 17: 105-119.
  • Takayama K(2020). In vitro and animal models for SARS-CoV-2 research. Trends in Pharmacological Sciences 4: 513-517.
  • Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A et al. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. The New England Journal of Medicine 382: 1564-1567.
  • Wan Y, Shang J, Graham R, Baric RS, Li F(2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology 94: e00127-20.
  • Wang XH, Aliyari R, Li WX, Li HW, Kim K et al. (2006). RNA interference directs innate immunity against viruses in adult Drosophila. Science 312: 452-454.
  • Wang J, Quake SR (2014). RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proceedings of the National Academy of Sciences USA 111: 13157-13162.
  • Wang X, Wu Y, Tung WW, Richter JH, Glanville AA et al. (2018). The simulation of stratospheric water vapor over the Asian summer monsoon region in CESMl(WACCM) models. Journal of Geophysical Research: Atmospheres 123: 11377-11391.
  • Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates Cet al. (2020). Factors associated with COVID-19-related death using OpenSAFELY. Nature 584: 430-436.
  • Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT et al. (2020). SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nature Immunology 21: 1327-1335.
  • Wong SL, Chen A, Chan Y, Chan CM, Chan CSM et al. (2005). In vivo functional characterization of the SARS-Coronavirus 3a protein in Drosophila. Biochemical and Biophysical Research Communications 337: 720-729.
  • World Health Organization (2021). WHO Coronavirus Disease (COVID-19) Dashboard. Vol. 2021. Geneva, Switzerland: WHO.
  • Xiang YT, Yang Y, Li W, Zhang L, Zhang Q et al. (2020). Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. The Lancet Psychiatry 7: 228-229.
  • Xu J, Cherry S (2014). Viruses and antiviral immunity in Drosophila. Developmental and Comparative Immunology 42: 67-84.
  • Yang S, Tian M, Johnson AN (2020). SARS-CoV-2 protein ORF3a is pathogenic in Drosophila and causes phenotypes associated with COVID-19 post-viral syndrome. bioRxiv 2020. doi: 10.1101/2020.12.20.423533
  • Yin S, Qin Q, Zhou B (2017). Functional studies of Drosophila zinc transporters reveal the mechanism for zinc excretion in Malpighian tubules. BMC Biology 15: 12.
  • Yu J, Tostanoski LH, Peter L, Mercado NB, McMahan K et al. (2020). DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science 369: 806-811.
  • Zambon RA, Vikram NV, Wu LP (2006). RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cellular Microbiology 8: 880-889.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

The potential use of Drosophila as an in vivo model organism for COVID-19-related research: a review

Eşref DEMİR

Genomic chronicle of SARS-CoV-2: a mutational analysis with over 1 million genome sequences

Oğuz ATA, Osman Mutluhan UĞUREL, Dilek TURGUT BALIK

Novel approaches for COVID-19 diagnosis and treatment: a nonsystematic review

Mehmet Dinçer BİLGİN, Hakan KAYGUSUZ, Şebnem GARİP USTAOĞLU, Feride SEVERCAN

β-Carboline alkaloids induce structural plasticity and inhibition of SARS-CoV-2 nsp3 macrodomain more potently than remdesivir metabolite GS-441524: computational approach

Yusuf Oloruntoyin AYIPO, Sani Najib YAHAYA, Halimah Funmilayo BABAMALE, Iqrar AHMAD, Harun PATEL, Mohd Nizam MORDI

In silico drug repositioning against human NRP1 to block SARS-CoV-2 host entry

Şeref GÜL

Targeting CoV-2 spike RBD and ACE-2 interaction with flavonoids of Anatolian propolis by in silico and in vitro studies in terms of possible COVID-19 therapeutics

Zehra CAN, Yakup KARA, Sevgi KOLAYLI, Oktay YILDIZ, Halil İbrahim GÜLER, Fulya AY ŞAL, Sabriye ÇANAKÇI, Ali Osman BELDÜZ

The current state of validated small molecules inhibiting SARS-CoV-2 nonstructural proteins

Merve USLU, Fatih KOCABAŞ

Treatment of COVID-19 patients with quercetin: a prospective, single center, randomized, controlled trial

Hasan ÖNAL, Seda YILMAZ SEMERCİ, Mehmet Eren KURNAZ, Nurettin SÜNER, Ali KOCATAŞ, Bengü ARSLAN, Nurcan ÜÇÜNCÜ ERGUN, Şeyma TOPUZ, Yulet Miray MOLU, Mehmet Abdussamet BOZKURT

Host variations in SARS-CoV-2 infection

Pelin KILIÇ, Devrim DEMİR DORA, Evrim GÜNEŞ ALTUNTAŞ, Zeynep Yağmur KARAGÜLLEOĞLU, Güldane CENGİZ SEVAL, Hanife Ayşegül MENDİ, Doruk ALTIOK, Elif Zeynep SAVCI, Büşra ÖZKARA, Gizem TUNÇER, Buğrahan Regaip KILINÇ, Evren SUİÇMEZ, Güneysu ÇETİN, Dilruba Beyza UNCUOĞLU, Cansu TEKELİ, Vahdi Umut BENGİ, Si

An update comprehensive review on the status of COVID-19: vaccines, drugs, variants and neurological symptoms

Muhsin KONUK, Ebru ÖZKAN OKTAY, Tuğba KAMAN, Ömer Faruk KARASAKAL, Salih TUNCAY, Öznur Özge ÖZCAN, Tuğçe SOYLAMIŞ, Mesut KARAHAN