In silico drug repositioning against human NRP1 to block SARS-CoV-2 host entry

In silico drug repositioning against human NRP1 to block SARS-CoV-2 host entry

Despite COVID-19 turned into a pandemic, no approved drug for the treatment or globally available vaccine is out yet. In such a global emergency, drug repurposing approach that bypasses a costly and long-time demanding drug discovery process is an effective way in search of finding drugs for the COVID-19 treatment. Recent studies showed that SARS-CoV-2 uses neuropilin-1 (NRP1) for host entry. Here we took advantage of structural information of the NRP1 in complex with C-terminal of spike (S) protein of SARSCoV-2 to identify drugs that may inhibit NRP1 and S protein interaction. U.S. Food and Drug Administration (FDA) approved drugs were screened using docking simulations. Among top drugs, well-tolerated drugs were selected for further analysis. Molecular dynamics (MD) simulations of drugs-NRP1 complexes were run for 100 ns to assess the persistency of binding. MM/GBSA calculations from MD simulations showed that eltrombopag, glimepiride, sitagliptin, dutasteride, and ergotamine stably and strongly bind to NRP1. In silico Alanine scanning analysis revealed that $Tyr^{297}, Trp^{301}, and Tyr^{353}$ amino acids of NRP1 are critical for drug binding. Validating the effect of drugs analyzed in this paper by experimental studies and clinical trials will expedite the drug discovery process for COVID-19.

___

  • Andriole GL, Kirby R (2003). Safety and tolerability of the dual 5 alpha-reductase inhibitor dutasteride in the treatment of benign prostatic hyperplasia. European Urology 44 (1): 82-88. doi: 10.1016/S0302-2838(03)00198-2
  • Ayarragaray JE (2014). Ergotism: a change of persepective. Annals of Vascular Surgery 28 (1): 265-268. doi: 10.1016/j. avsg.2013.02.005
  • Baez-Santos YM, St John SE, Mesecar AD (2015). The SARScoronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Research 115: 21-38. doi: 10.1016/j.antiviral.2014.12.015
  • Bagheri M, Niavarani A (2020). Molecular dynamics analysis predicts ritonavir and naloxegol strongly block the SARS-CoV-2 spike protein-hACE2 binding. Journal of Biomolecular Structure & Dynamics 1-10. doi: 10.1080/07391102.2020.1830854
  • Barage S, Karthic A, Bavi R, Desai N, Kumar R et al. (2020). Identification and characterization of novel RdRp and Nsp15 inhibitors for SARS-COV2 using computational approach. Journal of Biomolecular Structure & Dynamics 1-18. doi: 10.1080/07391102.2020.1841026
  • Bautista JL, Bugos C, Dirnberger G, Atherton T (2003). Efficacy and safety profile of glimepiride in Mexican American patients with type 2 diabetes mellitus: A randomized, placebo-controlled study. Clinical Therapeutics 25 (1): 194-209. doi: 10.1016/ S0149-2918(03)90025-7
  • Bharadwaj S, Azhar EI, Kamal MA, Bajrai LH, Dubey A et al. (2020). SARS-CoV-2 M-pro inhibitors: identification of anti-SARS-CoV-2 M-pro compounds from FDA approved drugs. Journal of Biomolecular Structure & Dynamics doi: 10.1080/07391102.2020.1842807
  • Boopathi S, Poma AB, Kolandaivel P (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure & Dynamics doi: 10.1080/07391102.2020.1758788
  • Busnadiego I, Fernbach S, Pohl MO, Karakus U, Huber M et al. (2020). Antiviral activity of type I, II, and III interferons counterbalances ACE2 inducibility and restricts SARS-CoV-2. Mbio 11 (5). doi: 10.1128/mBio.01928-20
  • Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J et al. (2020). Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370 (6518): 856-860. doi: 10.1126/science. abd2985
  • Cao S, Yaqoob U, Das A, Shergill U, Jagavelu K et al. (2010). Neuropilin-1 promotes cirrhosis of the rodent and human liver by enhancing PDGF/TGF-beta signaling in hepatic stellate cells. Journal of Clinical Investigation 120 (7): 2379-2394. doi: 10.1172/JCI41203
  • Carino A, Moraca F, Fiorillo B, Marchiano S, Sepe V et al. (2020). Hijacking SARS-CoV-2/ACE2 receptor interaction by natural and semi-synthetic steroidal agents acting on functional pockets on the receptor binding domain. Frontiers in Chemistry 8: 572885. doi: 10.3389/fchem.2020.572885.
  • Case DA, Cheatham III TE, Darden T, Gohlke H, Luo R et al. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry 26 (16): 1668-1688. doi: 10.1002/ jcc.20290
  • Choudhary S, Malik Y S, Tomar S (2020). Identification of SARSCoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach. Frontiers in Immunology 11. doi: 10.3389/fimmu.2020.01664
  • Christie S, Gobel H, Mateos V, Allen C, Vrijens F et al. (2003). Crossover comparison of efficacy and preference for rizatriptan 10 mg versus ergotamine/caffeine in migraine. European Neurology 49 (1): 20-29. doi: 10.1159/000067018
  • Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S et al. (2020). Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. New England Journal of Medicine 383 (16): 1544-1555. doi: 10.1056/NEJMoa2024671
  • Daly JL, Simonetti B, Klein K, Chen KE, Williamson MK et al. (2020). Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370 (6518): 861-865. doi: 10.1126/science.abd3072
  • DeLano WL (2009). PyMOL molecular viewer: updates and refinements. Abstracts of Papers of the American Chemical Society 238.
  • Diener HC, Jansen JP, Reches A, Pascual J, Pitei D et al. (2002). Efficacy, tolerability and safety of oral eletriptan and ergotamine plus caffeine (Cafergot (R)) in the acute treatment of migraine: a multicentre, randomised, double-blind, placebocontrolled comparison. European Neurology 47 (2): 99-107. doi: 10.1159/000047960
  • Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M et al. (2000). A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation Research 87 (5): E1-E9. doi: 10.1161/01. res.87.5.e1
  • Doruk YU, Yarparvar D, Akyel YK, Gul S, Taskin AC et al. (2020). A CLOCK-binding small molecule disrupts the interaction between CLOCK and BMAL1 and enhances circadian rhythm amplitude. Journal of Biological Chemistry 295 (11): 3518- 3531. doi: 10.1074/jbc.RA119.011332
  • Du QS, Wang SQ, Zhu Y, Wei DQ, Guo H et al. (2004). Polyprotein cleavage mechanism of SARS CoV M-pro and chemical modification of the octapeptide. Peptides 25 (11): 1857-1864. doi: 10.1016/j.peptides.2004.06.018
  • Durdağı S (2020). Virtual drug repurposing study against SARSCoV-2 TMPRSS2 target. Turkish Journal of Biology 44 (3): 185-191. doi: 10.3906/biy-2005-112.
  • Erickson-Miller CL, Delorme E, Tian SS, Hopson CB, Landis AJ et al. (2009). Preclinical activity of eltrombopag (SB-497115), an oral, nonpeptide thrombopoietin receptor agonist. Stem Cells 27 (2): 424-430. doi: 10.1634/stemcells.2008-0366
  • Fantin A, Herzog B, Mahmoud M, Yamaji M, Plein A et al. (2014). Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF-A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis. Development 141 (3): 556-562. doi: 10.1242/dev.103028
  • Ghosh R, Chakraborty A, Biswas A, Chowdhuri S (2020). Potential therapeutic use of corticosteroids as SARS CoV-2 main protease inhibitors: a computational study. Journal of Biomolecular Structure & Dynamics. doi: 10.1080/07391102.2020.1835728
  • Gul S, Ozcan O, Asar S, Okyar A, Baris I et al. (2020). In silico identification of widely used and well-tolerated drugs as potential SARS-CoV-2 3C-like protease and viral RNAdependent RNA polymerase inhibitors for direct use in clinical trials. Journal of Biomolecular Structure & Dynamics. doi: 10.1080/07391102.2020.1802346
  • Hoffmann M, Kleine-Weber H, Pohlmann S (2020a). A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Molecular Cell 78 (4): 779-784 e775. doi:10.1016/j.molcel.2020.04.022
  • Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T et al. (2020b). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181 (2): 271-280 e278. doi: 10.1016/j. cell.2020.02.052
  • Huang J, Rauscher S, Nawrocki G, Ran T, Feig M et al. (2017). CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods 14 (1): 71- 73. doi: 10.1038/Nmeth.4067
  • Humphrey W, Dalke A, Schulten K (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics & Modelling 14 (1): 33-38. doi: 10.1016/0263-7855(96)00018-5
  • Jarvis A, Allerston CK, Jia H, Herzog B, Garza-Garcia A et al. (2010). Small molecule inhibitors of the neuropilin-1 vascular endothelial growth factor A (VEGF-A) interaction. Journal of Medicinal Chemistry 53 (5): 2215-2226. doi: 10.1021/ jm901755g
  • Jeon S, Ko M, Lee J, Choi I, Byun SY et al. (2020). Identification of antiviral drug candidates against SARS-CoV-2 from FDAapproved drugs. Antimicrobial Agents and Chemotherapy 64 (7): e00819-00820. doi: 10.1128/AAC.00819-20
  • Jia H, Aqil R, Cheng L, Chapman C, Shaikh S et al. (2014). N-terminal modification of VEGF-A C terminus-derived peptides delineates structural features involved in neuropilin-1 binding and functional activity. Chembiochem 15 (8): 1161-1170. doi: 10.1002/cbic.201300658
  • Jo S, Kim T, Iyer VG, Im W (2008). Software news and updates - CHARNIM-GUI: a web-based grraphical user interface for CHARMM. Journal of Computational Chemistry 29 (11): 1859-1865. doi: 10.1002/jcc.20945
  • Karasik A, Aschner P, Katzeff H, Davies MJ, Stein PP (2008). Sitagliptin, a DPP-4 inhibitor for the treatment of patients with type 2 diabetes: a review of recent clinical trials. Current Medical Research and Opinion 24 (2): 489-496. doi: 10.1185/030079908X261069
  • Kim S, Lee J, Jo S, Brooks CL, Lee HS et al. (2017). CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. Journal of Computational Chemistry 38 (21): 1879-1886. doi: 10.1002/jcc.24829
  • Kumar V, Dhanjal JK, Bhargava P, Kaul A, Wang J et al. (2020). Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. Journal of Biomolecular Structure & Dynamics 1-13. doi: 10.1080/07391102.2020.1775704
  • Li HO, Zhou YJ, Zhang M, Wang HZ, Zhao Q et al. (2020a). Updated Approaches against SARS-CoV-2. Antimicrobial Agents and Chemotherapy 64 (6): e00483-00420. doi: 10.1128/ AAC.00483-20
  • Li Y, Zhang ZD, Yang L, Lian XY, Xie Y et al. (2020b). The MERSCoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. Iscience 23 (6): 1-15. doi: 10.1016/j. isci.2020.101160
  • Li Z, Li X, Huang YY, Wu YX, Liu RD et al. (2020c). Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proceedings of the National Academy of Sciences of the United States of America 117 (44): 27381-27387. doi: 10.1073/ pnas.2010470117
  • Liu Y, Mao B, Liang S, Yang JW, Lu H W et al. (2020). Association between age and clinical characteristics and outcomes of COVID-19. European Respiratory Journal 55 (5): 1-4. doi: 10.1183/13993003.01112-2020
  • Makridakis NM, Di Salle E, Reichardt JK (2000). Biochemical and pharmacogenetic dissection of human steroid 5 alphareductase type II. Pharmacogenetics 10 (5): 407-413. doi: 10.1097/00008571-200007000-00004
  • Mortier E, Pouchot J, Vinceneux P, Lalande M (2001). Ergotism related to interaction between nelfinavir and ergotamine. American Journal of Medicine 110 (7): 594-594. doi: 10.1016/ S0002-9343(01)00655-6
  • Mostaghel EA, Nelson PS, Lange P, Lin DW, Taplin ME et al. (2014). Targeted androgen pathway suppression in localized prostate cancer: a pilot study. Journal of Clinical Oncology 32 (3): 229- 237. doi: 10.1200/JCO.2012.48.6431
  • Mota F, Fotinou C, Rana RR, Chan AWE, Yelland T et al. (2018). Architecture and hydration of the arginine-binding site of neuropilin-1. Febs Journal 285 (7): 1290-1304. doi: 10.1111/ febs.14405
  • Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A et al. (2020). Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586 (7830): 589-593. doi: 10.1038/s41586-020- 2639-4
  • Muramatsu T, Kim YT, Nishii W, Terada T, Shirouzu M et al. (2013). Autoprocessing mechanism of severe acute respiratory syndrome coronavirus3C-like protease (SARS-CoV 3CLpro) from its polyproteins. Febs Journal 280 (9): 2002-2013. doi: 10.1111/febs.12222
  • Omori R, Matsuyama R, Nakata Y (2020). The age distribution of mortality from novel coronavirus disease (COVID-19) suggests no large difference of susceptibility by age. Scientific Reports 10 (1): 16642. doi: 10.1038/s41598-020-73777-8
  • Parker MW, Xu P, Li X, Vander Kooi CW (2012). Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1. Journal of Biological Chemistry 287 (14): 11082-11089. doi: 10.1074/jbc.M111.331140
  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E et al. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 26 (16): 1781-1802. doi: 10.1002/ jcc.20289
  • Powell J, Mota F, Steadman D, Soudy C, Miyauchi JT et al. (2018). Small molecule neuropilin-1 antagonists combine antiangiogenic and antitumor activity with immune modulation through reduction of transforming growth factor beta (TGF beta) production in regulatory T-cells. Journal of Medicinal Chemistry 61 (9): 4135-4154. doi: 10.1021/acs. jmedchem.8b00210
  • Rahman MM, Saha T, Islam KJ, Suman RH, Biswas S et al. (2020). Virtual screening, molecular dynamics and structure-activity relationship studies to identify potent approved drugs for Covid-19 treatment. Journal of Biomolecular Structure & Dynamics 1-11. doi: 10.1080/07391102.2020.1794974
  • Raj VS, Mou HH, Smits SL, Dekkers DHW, Muller MA et al. (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495 (7440): 251-254. doi: 10.1038/nature12005
  • Raz I, Chen Y, Wu M, Hussain S, Kaufman KD et al. (2008). Efficacy and safety of sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes. Current Medical Research and Opinion 24 (2): 537-550. doi: 10.1185/030079908X260925
  • Roehrborn CG, Boyle P, Nickel JC, Hoefner K, Andriole G et al. (2002). Efficacy and safety of a dual inhibitor of 5-alphareductase types 1 and 2 (dutasteride) in men with benign prostatic hyperplasia. Urology 60 (3): 434-441. doi: 10.1016/ s0090-4295(02)01905-2
  • Rosenthal E, Sala F, Chichmanian RM, Batt M, Cassuto JP (1999). Ergotism related to concurrent administration of ergotamine tartrate and indinavir. JAMA 281 (11): 987. doi: 10.1001/ jama.281.11.987
  • Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM et al. (2020). COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1T cell responses. Nature 586 (7830): 594-599. doi: 10.1038/s41586-020-2814-7
  • Sarma P, Shekhar N, Prajapat M, Avti P, Kaur H et al. (2021). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure & Dynamics 39 (8): 2724-2732. doi: 10.1080/07391102.2020.1753580
  • Schoeman D, Fielding BC (2019). Coronavirus envelope protein: current knowledge. Virology Journal 16 (1): 69. doi: 10.1186/ s12985-019-1182-0
  • Shang J, Wan YS, Luo CM, Ye G, Geng QB et al. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America 117 (21): 11727-11734. doi: 10.1073/pnas.2003138117
  • Shapovalov MV, Dunbrack Jr RL (2011). A smoothed backbonedependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19 (6): 844- 858. doi: 10.1016/j.str.2011.03.019
  • Singh KK, Chaubey G, Chen JY, Suravajhala P (2020a). Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. American Journal of Physiology-Cell Physiology 319 (2): C258-C267. doi: 10.1152/ajpcell.00224.2020
  • Singh N, Decroly E, Khatib AM, Villoutreix BO (2020b). Structurebased drug repositioning over the human TMPRSS2 protease domain: search for chemical probes able to repress SARS-CoV-2 Spike protein cleavages. European Journal of Pharmaceutical Sciences 153: 105495. doi: 10.1016/j.ejps.2020.105495
  • Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92 (6): 735-745. doi: 10.1016/S0092-8674(00)81402-6
  • Sulpice E, Plouet J, Berge M, Allanic D, Tobelem G et al. (2008). Neuropilin-1 and neuropilin-2 act as coreceptors, potentiating proangiogenic activity. Blood 111 (4): 2036-2045. doi: 10.1182/ blood-2007-04-084269
  • Tardu M, Rahim F, Kavakli I H, Turkay M (2016). Milp-hyperbox classification for structure-based drug design in the discovery of small molecule inhibitors of sirtuin 6. Rairo-Operations Research 50 (2): 387-400. doi: 10.1051/ro/2015042
  • Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E (2009). C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proceedings of the National Academy of Sciences of the United States of America 106 (38): 16157- 16162. doi: 10.1073/pnas.0908201106
  • Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B et al. (2003). Mechanisms and enzymes involved in SARS coronavirus genome expression. Journal of General Virology 84 (Pt 9): 2305-2315. doi: 10.1099/vir.0.19424-0
  • Trott O, Olson AJ (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 31 (2): 455-461. doi: 10.1002/jcc.21334
  • Tse LV, Hamilton AM, Friling T, Whittaker GR (2014). A novel activation mechanism of avian influenza virus H9N2 by furin. Journal of Virology 88 (3): 1673-1683. doi: 10.1128/JVI.02648- 13
  • Vander Kooi CW, Jusino MA, Perman B, Neau DB, Bellamy HD et al. (2007). Structural basis for ligand and heparin binding to neuropilin B domains. Proceedings of the National Academy of Sciences of the United States of America 104 (15): 6152- 6157. doi: 10.1073/pnas.0700043104
  • Venkatagopalan P, Daskalova SM, Lopez LA, Dolezal KA, Hogue BG (2015). Coronavirus envelope (E) protein remains at the site of assembly. Virology 478: 75-85. doi: 10.1016/j.virol.2015.02.005
  • Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT et al. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181 (2): 281-292. doi: 10.1016/j. cell.2020.02.058
  • Wang JM (2020). Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. Journal of Chemical Information and Modeling 60 (6): 3277-3286. doi: 10.1021/acs.jcim.0c00179
  • Wang Q, Zhang Y, Wu L, Niu S, Song C et al. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181 (4): 894-904.e9. doi:10.1016/j.cell.2020.03.045
  • Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M et al. (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research 34 (Database issue): D668-672. doi: 10.1093/nar/gkj067
  • Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S et al. (2020). Virological assessment of hospitalized patients with COVID-2019. Nature 581 (7809): 465-469. doi: 10.1038/ s41586-020-2196-x
  • Wrapp D, Wang NS, Corbett KS, Goldsmith JA, Hsieh CL et al. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367 (6483): 1260-1263. doi: 10.1126/science.abb2507
  • Wu A, Peng Y, Huang B, Ding X, Wang X et al. (2020a). Genome composition and divergence of the novel coronavirus (2019- nCoV) originating in China. Cell Host & Microbe 27 (3): 325- 328. doi: 10.1016/j.chom.2020.02.001
  • Wu CR, Liu Y, Yang YY, Zhang P, Zhong W et al. (2020b). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B 10 (5): 766-788. doi:10.1016/j.apsb.2020.02.008
  • Wu F, Zhao S, Yu B, Chen YM, Wang W et al. (2020c). A new coronavirus associated with human respiratory disease in China. Nature 580 (7803): E7. doi: 10.1038/s41586-020-2202-3
  • Yan R, Zhang Y, Li Y, Xia L, Guo Y et al. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367 (6485): 1444-1448. doi: 10.1126/science.abb2762
  • Yi Y, Lagniton PNP, Ye S, Li E Q, Xu RH (2020). COVID-19: what has been learned and to be learned about the novel coronavirus disease. International Journal of Biological Sciences 16 (10): 1753-1766. doi: 10.7150/ijbs.45134
  • Yoshimoto FK (2020). The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein Journal 39 (3): 198-216. doi: 10.1007/s10930-020-09901-4
  • Zhang H, Kang Z, Gong H, Xu D, Wang J et al. (2020). The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. bioRxiv. doi: 10.1101/2020.01.30.927806
  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579 (7798): 270-273. doi: 10.1038/s41586-020- 2012-7
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Cannabinoids for SARS-CoV-2 and is there evidence of their therapeutic efficacy?

Veysel SÜZERER, İsmail YENER, Abdulselam ERTAŞ, Mustafa Abdullah YILMAZ, Remzi EKİNCİ, Emine AYAZ TİLKAT, Sevgi İRTEGÜN KANDEMİR, Ahmet ONAY, Nesrin BOZHAN

The current state of validated small molecules inhibiting SARS-CoV-2 nonstructural proteins

Merve USLU, Fatih KOCABAŞ

Treatment of COVID-19 patients with quercetin: a prospective, single center, randomized, controlled trial

Hasan ÖNAL, Seda YILMAZ SEMERCİ, Mehmet Eren KURNAZ, Nurettin SÜNER, Ali KOCATAŞ, Bengü ARSLAN, Nurcan ÜÇÜNCÜ ERGUN, Şeyma TOPUZ, Yulet Miray MOLU, Mehmet Abdussamet BOZKURT

Targeting CoV-2 spike RBD and ACE-2 interaction with flavonoids of Anatolian propolis by in silico and in vitro studies in terms of possible COVID-19 therapeutics

Zehra CAN, Yakup KARA, Sevgi KOLAYLI, Oktay YILDIZ, Halil İbrahim GÜLER, Fulya AY ŞAL, Sabriye ÇANAKÇI, Ali Osman BELDÜZ

Pathogenesis and treatment of cytokine storm in COVID-19

Gökhan KESER, Pamir ATAGÜNDÜZ, Mehmet SOY

Binary-QSAR guided virtual screening of FDA approved drugs and compounds in clinical investigation against SARS-CoV-2 main protease

Serdar DURDAĞI, Yeşim YUMAK, Lalehan OKTAY, Ece ERDEMOĞLU, İlayda TOLU, Ayşenur ÖZCAN, Elif ACAR, Şehriban BÜYÜKKILIÇ, Alpsu OLKAN

The effect of weekend curfews on epidemics: a Monte Carlo simulation

Hakan KAYGUSUZ, A. Nihat BERKER

Host variations in SARS-CoV-2 infection

Pelin KILIÇ, Devrim DEMİR DORA, Evrim GÜNEŞ ALTUNTAŞ, Zeynep Yağmur KARAGÜLLEOĞLU, Güldane CENGİZ SEVAL, Hanife Ayşegül MENDİ, Doruk ALTIOK, Elif Zeynep SAVCI, Büşra ÖZKARA, Gizem TUNÇER, Buğrahan Regaip KILINÇ, Evren SUİÇMEZ, Güneysu ÇETİN, Dilruba Beyza UNCUOĞLU, Cansu TEKELİ, Vahdi Umut BENGİ, Si

Novel approaches for COVID-19 diagnosis and treatment: a nonsystematic review

Mehmet Dinçer BİLGİN, Hakan KAYGUSUZ, Şebnem GARİP USTAOĞLU, Feride SEVERCAN

CoronaVac (Sinovac) COVID-19 vaccine-induced molecular changes in healthy human serum by infrared spectroscopy coupled with chemometrics

Rafig GURBANOV, Feride SEVERCAN, Ayca DOĞAN, Mete SEVERCAN