Treatment of COVID-19 patients with quercetin: a prospective, single center, randomized, controlled trial

Treatment of COVID-19 patients with quercetin: a prospective, single center, randomized, controlled trial

Scientific research continues on new preventive and therapeutic strategies against severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2). So far, there is no proven curative treatment, and a valid alternative therapeutic approach needs to be developed. This study is designed to evaluate the effect of quercetin in COVID-19 treatment. This was a single-centre, prospective randomized controlled cohort study. Routine care versus QCB (quercetin, vitamin C, bromelain) supplementation was compared between 429 patients with at least one chronic disease and moderate-to-severe respiratory symptoms. Demographic features, signs, laboratory results and drug administration data of patients were recorded. The endpoint was that QCB supplementation was continued throughout the follow-up period from study baseline to discharge, intubation, or death. The most common complaints at the time of hospital admission were fatigue (62.4%), cough (61.1%), anorexia (57%), thirst (53.7%), respiratory distress (51%) and chills (48.3%). The decrease in CRP and ferritin levels was higher in the QCB group (all Ps were < 0.05). In the QCB group, the increase in platelet and lymphocyte counts was higher (all Ps were < 0.05). QCB did not reduce the risk of events during follow-up. Adjustments for statistically significant parameters, including the lung stage, use of favipiravir and presence of comorbidity did not change the results. While there was no difference between the groups in terms of event frequency, theQCB group had more advanced pulmonary findings. QCB supplement is shown to have a positive effect on laboratory recovery. While there was no difference between the groups in terms of event frequency, QCB supplement group had more advanced pulmonar findings, and QCB supplement is shown to have a positive effect on laboratory recovery/results. Therefore, we conclude that further studies involving different doses and plasma level measurements are required to reveal the dose/response relationship and bioavailability of QCB for a better understanding of the role of QCB in the treatment of SARS CoV-2.

___

  • Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T et al. (2020). Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. New England Journal of Medicine 383 (2): 120-128. doi: 10.1056/NEJMoa2015432
  • Al Shukor N, Van Camp J, Gonzales GB, Staljanssens D, Struijs K et al. (2013). Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: a study of structure activity relationships. Journal of Agricultural and Food Chemistry 61 (48): 11832-11839. doi: 10.1021/jf404641v
  • Askari G, Ghiasvand R, Feizi A, Ghanadian SM, Karimian J (2012). The effect of quercetin supplementation on selected markers of inflammation and oxidative stress. Journal of Research in Medical Sciences 17 (7): 637-641.
  • Bindoli A, Valente M, Cavallini L (1985). Inhibitory action of quercetin on xanthine oxidase and xanthine dehydrogenase activity. Pharmacological Research Communications 17 (9): 831-839. doi: 10.1016/0031-6989(85)90041-4.
  • Boots AW, Haenen GR, Bast A (2008). Health effects of quercetin: from antioxidant to nutraceutical. European Journal of Pharmacology 585 (2-3): 325-337. doi: 10.1016/j. ejphar.2008.03.008.
  • Boots AW, Li H, Schins RP, Duffin R, Heemskerk JW, et al. (2007). The quercetin paradox. Toxicology and Applied Pharmacology 222 (1): 89-96. doi: 10.1016/j.taap.2007.04.004.
  • Bowles L, Platton S, Yartey N, Dave M, Lee K et al. (2020). Lupus anticoagulant and abnormal coagulation tests in patients with Covid-19. New England Journal of Medicine 383 (3): 288-290. doi: 10.1056/NEJMc2013656.
  • Bösmüller H, Traxler S, Bitzer M, Häberle H, Raiser W et al. (2020). The evolution of pulmonary pathology in fatal COVID-19 disease: an autopsy study with clinical correlation. Virchows Archiv 477 (3): 349-357. doi: 10.1007/s00428-020-02881-x.
  • Chen L, Li J, Luo C, Liu H, Xu W et al. (2006). Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features. Bioorganic & Medicinal Chemistry 14 (24): 8295-8306. doi: 10.1016/j.bmc.2006.09.014.
  • Chen N, Zhou M, Dong X, Qu J, Gong F et al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395 (10223): 507-513. doi: 10.1016/S0140-6736(20)30211-7.
  • Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R et al. (2020). Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARSCoV-2): anti-inflammatory strategies. Journal of Biological Regulators and Homeostatic Agents 34 (2): 327-331. doi: 10.23812/CONTI-E.
  • Davis JM, Murphy EA, Carmichael MD (2009). Effects of the dietary flavonoid quercetin upon performance and health. Current Sports Medicine Reports 8 (4): 206-213. doi: 10.1249/ JSR.0b013e3181ae8959.
  • De Palma AM, Vliegen I, De Clercq E, Neyts J (2008). Selective inhibitors of picornavirus replication. Medical Research Reviews 28 (6): 823-884. doi: 10.1002/med.20125.
  • Evers DL, Chao CF, Wang X, Zhang Z, Huong SM et al. (2005). Human cytomegalovirus-inhibitory flavonoids: studies on antiviral activity and mechanism of action. Antiviral Research 68 (3): 124-134. doi: 10.1016/j.antiviral.2005.08.002.
  • Fauvel C, Weizman O, Trimaille A, Mika D, Pommier T et al. (2020). Pulmonary embolism in COVID-19 patients: a French multicentre cohort study. European Heart Journal 41 (32): 3058-3068. doi: 10.1093/eurheartj/ehaa500.
  • Ferrer JL, Austin MB, Stewart C, Jr., Noel JP (2008). Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiology and Biochemistry 46 (3): 356-370. doi: 10.1016/j.plaphy.2007.12.009.
  • Gormaz JG, Quintremil S, Rodrigo R (2015). Cardiovascular Disease: A Target for the Pharmacological Effects of Quercetin. Current Topics in Medicinal Chemistry 15 (17): 1735-1742. doi: 10.217 4/1568026615666150427124357.
  • Graefe EU, Derendorf H, Veit M (1999). Pharmacokinetics and bioavailability of the flavonol quercetin in humans. Int Journal of Clinical Pharmacology and Therapeutics 37 (5): 219-233.
  • Hanley B, Lucas SB, Youd E, Swift B, Osborn M (2020). Autopsy in suspected COVID-19 cases. Journal of Clinical Pathology 73 (5): 239-242. doi: 10.1136/jclinpath-2020-206522
  • Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM et al. (2007) A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food and Chemical Toxicology 45 (11): 2179-2205. doi: 10.1016/j. fct.2007.05.015
  • Hottz ED, Azevedo-Quintanilha IG, Palhinha L, Teixeira L, Barreto EA et al. (2020). Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 136 (11): 1330-1341. doi: 10.1182/blood.2020007252
  • Hubbard GP, Stevens JM, Cicmil M, Sage T, Jordan PA et al. (2003). Quercetin inhibits collagen-stimulated platelet activation through inhibition of multiple components of the glycoprotein VI signaling pathway. Journal of Thrombosis Haemostasis 1 (5): 1079-1088. doi: 10.1046/j.1538-7836.2003.00212.x
  • Ishitsuka H, Ohsawa C, Ohiwa T, Umeda I, Suhara Y (1982). Antipicornavirus flavone Ro 09-0179. Antimicrobial Agents and Chemotherapy Journal 22 (4): 611-616. doi: 10.1128/ AAC.22.4.611
  • Karhausen J, Choi HW, Maddipati KR, Mathew JP, Ma Q et al. (2020). Platelets trigger perivascular mast cell degranulation to cause inflammatory responses and tissue injury. Science Advances 6 (12): eaay6314. doi: 10.1126/sciadv.aay6314
  • Kaul TN, Middleton E, Jr., Ogra PL (1985). Antiviral effect of flavonoids on human viruses. Journal of Medical Virology 15 (1): 71-79. doi: 10.1002/jmv.1890150110
  • Kim Y, Kim H, Bae S, Choi J, Lim SY et al. (2013). Vitamin C Is an Essential Factor on the Anti-viral Immune Responses through the Production of Interferon-α/β at the Initial Stage of Influenza A Virus (H3N2) Infection. Immune Network 13 (2): 70-74. doi: 10.4110/in.2013.13.2.70
  • Kumazawa Y, Kawaguchi K, Takimoto H (2006). Immunomodulating effects of flavonoids on acute and chronic inflammatory responses caused by tumor necrosis factor alpha. Current Pharmaceutical Design 12 (32): 4271-4279. doi: 10.2174/138161206778743565
  • Kuznetsova T, Prange KHM, Glass CK, de Winther MPJ (2020). Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nature Reviews Cardiology 17 (4): 216-228. doi: 10.1038/s41569-019-0265-3
  • Lei S, Jiang F, Su W, Chen C, Chen J, et al. (2020). Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. EClinicalMedicine 21: 100331. doi: 10.1016/j.eclinm.2020.100331
  • Li W, Maeda N, Beck MA (2006). Vitamin C deficiency increases the lung pathology of influenza virus-infected gulo-/- mice. Journal of Nutrition 136 (10): 2611-2616. doi: 10.1093/ jn/136.10.2611
  • Loke WM, Proudfoot JM, McKinley AJ, Needs PW, Kroon PA et al. (2008). Quercetin and its in vivo metabolites inhibit neutrophil-mediated low-density lipoprotein oxidation. Journal of Agriculture and Food Chemistry 56 (10): 3609- 3615. doi: 10.1021/jf8003042
  • Loke WM, Proudfoot JM, Stewart S, McKinley AJ, Needs PW et al. (2008). Metabolic transformation has a profound effect on anti-inflammatory activity of flavonoids such as quercetin: lack of association between antioxidant and lipoxygenase inhibitory activity. Biochemical Pharmacology 75 (5): 1045- 1053. doi: 10.1016/j.bcp.2007.11.002
  • Manach C, Mazur A, Scalbert A (2005). Polyphenols and prevention of cardiovascular diseases. Current Opinion in Lipidology 16 (1): 77-84. doi: 10.1097/00041433-200502000-00013
  • Marchandot B, Trimaille A, Curtiaud A, Matsushita K, Jesel L et al. (2020). Thromboprophylaxis: balancing evidence and experience during the COVID-19 pandemic. Journal of Thrombosis and Thrombolysis 50 (4): 799-808. doi: 10.1007/ s11239-020-02231-3
  • McFadyen JD, Stevens H, Peter K (2020). The Emerging Threat of (Micro)Thrombosis in COVID-19 and Its Therapeutic Implications. Circulation Research 127 (4): 571-587. doi: 10.1161/CIRCRESAHA.120.317447
  • Mendes LF, Gaspar VM, Conde TA, Mano JF, Duarte IF (2019). Flavonoid-mediated immunomodulation of human macrophages involves key metabolites and metabolic pathways. Scientific Reports 9 (1): 14906. doi: 10.1038/s41598- 019-51113-z
  • Moon YJ, Wang L, DiCenzo R, Morris ME (2008). Quercetin pharmacokinetics in humans. Biopharmaceutics & Drug Disposition 29 (4): 205-217. doi: 10.1002/bdd.605
  • Motta Junior JDS, Miggiolaro A, Nagashima S, de Paula CBV, Baena CP et al. (2020). Mast Cells in Alveolar Septa of COVID-19 Patients: A Pathogenic Pathway That May Link Interstitial Edema to Immunothrombosis. Frontiers in Immunology 11: 574862. doi: 10.3389/fimmu.2020.574862
  • Nair MP, Kandaswami C, Mahajan S, Chadha KC, Chawda R et al. (2002). The flavonoid, quercetin, differentially regulates Th-1 (IFNgamma) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. Biochimica et Biophysica Acta 1593 (1): 29-36. doi: 10.1016/s0167- 4889(02)00328-2
  • Palmer MJ, Bell AS, Fox DN, Brown DG (2007). Design of second generation phosphodiesterase 5 inhibitors. Current Topics in Medicinal Chemistry 7 (4): 405-419. doi: 10.2174/156802607779941288
  • Pavan R, Jain S, Shraddha, Kumar A (2012). Properties and therapeutic application of bromelain: a review. Biotechnology Research International 2012: 976203. doi: 10.1155/2012/976203
  • Pearce FL, Befus AD, Bienenstock J (1984). Mucosal mast cells. III. Effect of quercetin and other flavonoids on antigeninduced histamine secretion from rat intestinal mast cells. Journal of Allergy Clinical Immunology 73 (6): 819-23. doi: 10.1016/0091-6749(84)90453-6
  • Pignatelli P, Di Santo S, Carnevale R, Violi F (2005). The polyphenols quercetin and catechin synergize in inhibiting platelet CD40L expression. Thrombosis and Haemostasis 94 (4): 888-889. doi: 10.1160/TH05-04-0888
  • Potus F, Mai V, Lebret M, Malenfant S, Breton-Gagnon E et al. (2020). Novel insights on the pulmonary vascular consequences of COVID-19. American Journal of Physiology Lung Cellular and Molecular Physiology 319 (2): L277-l88. doi: 10.1152/ ajplung.00195.2020
  • Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN et al. (2020). Multiorgan and Renal Tropism of SARSCoV-2. New England Journal of Medicine 383 (6): 590-592. doi: 10.1056/NEJMc2011400
  • Ranucci M, Ballotta A, Di Dedda U, Bayshnikova E, Dei Poli M et al. (2020). The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. Journal of Thrombosis and Haemostasis 18 (7): 1747-1751. doi: 10.1111/jth.14854
  • Robaszkiewicz A, Balcerczyk A, Bartosz G (2007). Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biology International 31 (10): 1245-1250. doi: 10.1016/j. cellbi.2007.04.009
  • Romero M, Jiménez R, Sánchez M, López-Sepúlveda R, Zarzuelo MJ et al. (2009). Quercetin inhibits vascular superoxide production induced by endothelin-1: Role of NADPH oxidase, uncoupled eNOS and PKC. Atherosclerosis 202 (1): 58-67. doi: 10.1016/j.atherosclerosis.2008.03.007
  • Ross JA, Kasum CM (2002). Dietary flavonoids: bioavailability, metabolic effects, and safety. Annual Review of Nutrition 22: 19-34. doi: 10.1146/annurev.nutr.22.111401.144957
  • Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R et al. (2003). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300 (5624): 1394- 1399. doi: 10.1126/science.1085952
  • Russo GL, Tedesco I, Spagnuolo C, Russo M (2017). Antioxidant polyphenols in cancer treatment: Friend, foe or foil? Seminars in Cancer Biology 46: 1-13. doi: 10.1016/j.semcancer.2017.05.005
  • Salamanna F, Maglio M, Landini MP, Fini M (2020). Platelet functions and activities as potential hematologic parameters related to Coronavirus Disease 2019 (Covid-19). Platelets 31 (5): 627-632. doi: 10.1080/09537104.2020.1762852
  • Shaik YB, Castellani ML, Perrella A, Conti F, Salini V et al. (2006). Role of quercetin (a natural herbal compound) in allergy and inflammation. Journal of Biologic Regulators and Homeostatic Agents 20 (3-4): 47-52.
  • Smith M, Smith JC (2020). Repurposing Therapeutics for COVID-19: Supercomputer-Based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-Human ACE2 Interface. ChemRxiv. Cambridge, UK: Cambridge Open Engage.
  • Spagnuolo C, Moccia S, Russo GL (2018). Anti-inflammatory effects of flavonoids in neurodegenerative disorders. European Journal of Medicinal Chemistry 153: 105-115. doi: 10.1016/j. ejmech.2017.09.001
  • Uchide N, Toyoda H (2011). Antioxidant therapy as a potential approach to severe influenza-associated complications. Molecules 16 (3): 2032-2052. doi: 10.3390/molecules16032032
  • Valero N, Mosquera J, Alcocer S, Bonilla E, Salazar J et al. (2015). Melatonin, minocycline and ascorbic acid reduce oxidative stress and viral titers and increase survival rate in experimental Venezuelan equine encephalitis. Brain Research 1622: 368-376. doi: 10.1016/j.brainres.2015.06.034
  • Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR el at. (2011) Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virology Journal 8: 560. doi: 10.1186/1743-422X8-560
  • Zhang L, Lin D, Sun X, Curth U, Drosten C et al. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368 (6489): 409-412. doi: 10.1126/science.abb3405
  • Zhang Y, Xiao M, Zhang S, Xia P, Cao W et al. (2020). Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. New England Journal of Medicine 382 (17): e38. doi: 10.1056/ NEJMc2007575
  • Zwicker JI, Schlechter BL, Stopa JD, Liebman HA, Aggarwal A et al. (2019). Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI Insight. 4 (4): e125851. doi: 10.1172/jci. insight.125851
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Determination of the interaction between the receptor binding domain of 2019-nCoV spike protein, TMPRSS2, cathepsin B and cathepsin L, and glycosidic and aglycon forms of some flavonols

Erman Salih İSTİFLİ, Bektaş TEPE, Cengiz SARIKÜRKCÜ, Arzuhan ŞIHOĞLU TEPE, Paulo A. NETZ, İbrahim Halil KILIÇ

The potential use of Drosophila as an in vivo model organism for COVID-19-related research: a review

Eşref DEMİR

In silico drug repositioning against human NRP1 to block SARS-CoV-2 host entry

Şeref GÜL

Host variations in SARS-CoV-2 infection

Pelin KILIÇ, Devrim DEMİR DORA, Evrim GÜNEŞ ALTUNTAŞ, Zeynep Yağmur KARAGÜLLEOĞLU, Güldane CENGİZ SEVAL, Hanife Ayşegül MENDİ, Doruk ALTIOK, Elif Zeynep SAVCI, Büşra ÖZKARA, Gizem TUNÇER, Buğrahan Regaip KILINÇ, Evren SUİÇMEZ, Güneysu ÇETİN, Dilruba Beyza UNCUOĞLU, Cansu TEKELİ, Vahdi Umut BENGİ, Si

Targeting CoV-2 spike RBD and ACE-2 interaction with flavonoids of Anatolian propolis by in silico and in vitro studies in terms of possible COVID-19 therapeutics

Zehra CAN, Yakup KARA, Sevgi KOLAYLI, Oktay YILDIZ, Halil İbrahim GÜLER, Fulya AY ŞAL, Sabriye ÇANAKÇI, Ali Osman BELDÜZ

Treatment of COVID-19 patients with quercetin: a prospective, single center, randomized, controlled trial

Hasan ÖNAL, Seda YILMAZ SEMERCİ, Mehmet Eren KURNAZ, Nurettin SÜNER, Ali KOCATAŞ, Bengü ARSLAN, Nurcan ÜÇÜNCÜ ERGUN, Şeyma TOPUZ, Yulet Miray MOLU, Mehmet Abdussamet BOZKURT

The effect of weekend curfews on epidemics: a Monte Carlo simulation

Hakan KAYGUSUZ, A. Nihat BERKER

Novel approaches for COVID-19 diagnosis and treatment: a nonsystematic review

Mehmet Dinçer BİLGİN, Hakan KAYGUSUZ, Şebnem GARİP USTAOĞLU, Feride SEVERCAN

The current state of validated small molecules inhibiting SARS-CoV-2 nonstructural proteins

Merve USLU, Fatih KOCABAŞ

CoronaVac (Sinovac) COVID-19 vaccine-induced molecular changes in healthy human serum by infrared spectroscopy coupled with chemometrics

Rafig GURBANOV, Feride SEVERCAN, Ayca DOĞAN, Mete SEVERCAN