The current state of validated small molecules inhibiting SARS-CoV-2 nonstructural proteins

The current state of validated small molecules inhibiting SARS-CoV-2 nonstructural proteins

The current COVID-19 outbreak has had a profound influence on public health and daily life. Despite all restrictions and vaccination programs, COVID-19 still can lead to fatality due to a lack of COVID-19-specific treatments. A number of studies have demonstrated the feasibility to develop therapeutics by targeting underlying components of the viral proteome. Here we reviewed recently developed and validated small molecule inhibitors of SARS-CoV-2’s nonstructural proteins. We described the validation level of identified compounds specific for SARS-CoV-2 in the presence of in vitro and in vivo supporting data. The mechanisms of pharmacological activity, as well as approaches for developing improved SARS-CoV-2 NSP inhibitors have been emphasized.

___

  • Agostini ML, Pruijssers AJ, Chappell JD, Gribble J, Lu X et al. (2019). Small-molecule antiviral β-d-N4-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance. Journal of Virology 93.
  • Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ, Moscona A (2013). Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce doublemembrane vesicles. mBio 4.
  • Azkur AK, Akdis M, Azkur D, Sokolowska M, Veen W et al. (2020). Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy 75: 1564- 1581.
  • Báez-Santos YM, St. John SE, Mesecar AD (2015). The SARScoronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Research 115: 21-38.
  • Basier C, Basu S, Beale R, Canal B, Cowling VH et al. (2021). Identification of SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of the nsp14 RNA cap methyltransferase. bioRxiv.
  • Bulut C, Kato Y (2020). Epidemiology of COVID-19. Turkish Journal of Medical Sciences 50: 563-570.
  • Canal B, McClure AW, Curran JF, Wu M, Ulferts R et al. (2021). Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp14/nsp10 exoribonuclease. bioRxiv 2021.2004.2007.438812
  • Chang L-J, Chen T-H (2021). NSP16 2′-O-MTase in coronavirus pathogenesis: possible prevention and treatments strategies. Viruses 13: 538.
  • Chen Y, Su C, Ke M, Jin X, Xu L et al. (2011). Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog 7: e1002294.
  • Chien M, Anderson TK, Jockusch S, Tao C, Li X et al. (2020). Nucleotide analogues as inhibitors of SARS-CoV-2 Polymerase, a key drug target for COVID-19. Journal of Proteome Research 19: 4690-4697.
  • Clark LK, Green TJ, Petit CM, Dutch RE (2021). Structure of nonstructural protein 1 from SARS-CoV-2. Journal of Virology 95.
  • Coelho C, Gallo G, Campos CB, Hardy L, Würtele M (2020). Biochemical screening for SARS-CoV-2 main protease inhibitors. PloS one 15: e0240079.
  • Cornillez-Ty CT, Liao L, Yates JR, Kuhn P, Buchmeier MJ (2009). Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. Journal of Virology 83: 10314-10318.
  • Cottam EM, Maier HJ, Manifava M, Vaux LC, ChandraSchoenfelder P et al. (2011). Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy 7: 1335-1347.
  • Cottam EM, Whelband MC, Wileman T (2014). Coronavirus NSP6 restricts autophagosome expansion. Autophagy 10: 1426-1441.
  • Dai W, Zhang B, Jiang X-M, Su H, Li J et al. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368: 1331-1335.
  • Decroly E, Debarnot C, Ferron F, Bouvet M, Coutard B et al. (2011). Crystal structure and functional analysis of the SARScoronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog 7: e1002059.
  • Den Boon JA, Ahlquist P (2010). Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annual Review of Microbiology 64: 241-256.
  • Farias AB, Candiotto G, Siragusa L, Goracci L, Cruciani G et al. (2021). Targeting Nsp9 as an anti-SARS-CoV-2 strategy. New Journal of Chemistry 45: 522-525.
  • Freitas BT, Durie IA, Murray J, Longo JE, Miller HC et al. (2020). Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS Infectious Diseases 6: 2099-2109.
  • Gadhave K, Kumar P, Kumar A, Bhardwaj T, Garg N et al. (2020). NSP 11 of SARS-CoV-2 is an intrinsically disordered protein. bioRxiv
  • Gadhave K, Kumar P, Kumar A, Bhardwaj T, Garg N et al. (2021). Conformational dynamics of 13 amino acids long NSP11 of SARS-CoV-2 under membrane mimetics and different solvent conditions. Microbial Pathogenesis 105041
  • Gao Y, Yan L, Huang Y, Liu F, Zhao Y et al. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368: 779-782.
  • Glaab E, Manoharan GB, Abankwa D (2021). A pharmacophore model for SARS-CoV-2 3CLpro small molecule inhibitors and in vitro experimental validation of computationally screened inhibitors. bioRxiv.
  • Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA et al. (2004). Ultrastructural characterization of SARS coronavirus. Emerging Infectious Diseases 10: 320-326.
  • Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K et al. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583: 459-468.
  • Greig SL (2016). Sofosbuvir/velpatasvir: a review in chronic hepatitis C. Drugs 76: 1567-1578.
  • Griffin JWD (2020). SARS-CoV and SARS-CoV-2 main protease residue interaction networks change when bound to inhibitor N3. Journal of Structural Biology 211: 107575.
  • Güler G, Özdemir H, Omar D, Akdoğan G (2021). Coronavirus disease 2019 (COVID-19): Biophysical and biochemical aspects of SARS-CoV-2 and general characteristics. Progress in Biophysics and Molecular Biology.
  • Gupta M, Azumaya CM, Moritz M, Pourmal S, Diallo A et al. (2021). CryoEM and AI reveal a structure of SARS-CoV-2 Nsp2, a multifunctional protein involved in key host processes. bioRxiv. Hagemeijer M, Rottier P, Haan C (2012). Biogenesis and dynamics of the coronavirus replicative structures. Viruses 4: 3245-3269.
  • Hasöksüz M, Kiliç S, Saraç F (2020). Coronaviruses and SARSCOV-2. Turkish Journal of Medical Sciences 50: 549-556.
  • Hoffmann HH, Sánchez-Rivera FJ, Schneider WM, Luna JM, SotoFeliciano YM et al. (2021). Functional interrogation of a SARSCoV-2 host protein interactome identifies unique and shared coronavirus host factors. Cell Host & Microbe 29: 267-280. e265.
  • Iketani S, Forouhar F, Liu H, Hong SJ, Lin F-Y et al. (2021). Lead compounds for the development of SARS-CoV-2 3CL protease inhibitors. Nature Communications 12.
  • Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B et al. (2006). A second, non-canonical RNA-dependent RNA polymerase in SARS Coronavirus. The EMBO Journal 25: 4933-4942.
  • Jena AB, Kanungo N, Nayak V, Chainy GBN, Dandapat J (2021). Author correction: catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: insights from computational studies. Scientific reports 11.
  • Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B et al. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582: 289-293.
  • Jin Z, Zhao Y, Sun Y, Zhang B, Wang H et al. (2020). Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature Structural & Molecular Biology 27: 529-532.
  • Kasprzyk R, Spiewla TJ, Golojuch S, Vangeel L, Jonghe SD et al. (2021). Identification and evaluation of potential SARSCoV-2 antiviral agents targeting mRNA cap guanine N7- methyltransferase. Antiviral Research 193: 105142.
  • Khalili Yazdi A, Li F, Devkota K, Perveen S, Ghiabi P et al. (2021). A high-throughput radioactivity-based assay for screening SARS-CoV-2 nsp10-nsp16 complex. SLAS DISCOVERY: Advancing the Science of Drug Discovery 26: 757-765.
  • Kim N-E, Kim D-K, Song Y-J (2021). SARS-CoV-2 nonstructural proteins 1 and 13 suppress caspase-1 and the NLRP3 inflammasome activation. Microorganisms 9: 494.
  • Kim Y, Jedrzejczak R, Maltseva NI, Wilamowski M, Endres M et al. (2020). Crystal structure of Nsp15 endoribonuclease NendoU from SARS‐CoV‐2. Protein Science 29: 1596-1605.
  • Kim Y, Jedrzejczak R, Maltseva NI, Wilamowski M, Endres M et al. (2020). Crystal structure of Nsp15 endoribonuclease NendoU from SARS‐CoV‐2. Protein Science 29: 1596-1605.
  • Kim Y, Wower J, Maltseva N, Chang C, Jedrzejczak R et al. (2021). Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2. Communications Biology 4.
  • Klemm T, Ebert G, Calleja DJ, Allison CC, Richardson LW et al. (2020). Mechanism and inhibition of the papain‐like protease, PLpro, of SARS‐CoV‐2. The EMBO Journal 39.
  • Kocabas F, Aslan GS (2015). Fluorometric CCHFV OTU protease assay with potent inhibitors. Virus Genes 51: 190-197.
  • Kocabaş F, Ergin EK (2016). Identification of small molecule binding pocket for inhibition of Crimean–Congo hemorrhagic fever virus OTU protease. Turkish Journal of Biology 40: 239-249.
  • Kocabas F, Turan RD, Aslan GS (2015). Fluorometric RdRp assay with self-priming RNA. Virus genes 50: 498-504.
  • Kokic G, Hillen HS, Tegunov D, Dienemann C, Seitz F et al. (2021). Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nature Communications 12.
  • Kuo C-J, Chao T-L, Kao H-C, Tsai Y-M, Liu Y-K et al. (2021). Kinetic characterization and Inhibitor Screening for the Proteases Leading to Identification of Drugs against SARS-CoV-2. Antimicrobial Agents and chemotherapy 65:
  • Levine B (2005). Eating oneself and uninvited guests. Cell 120: 159- 162.
  • Lin S, Chen H, Ye F, Chen Z, Yang F et al. (2020). Crystal structure of SARS-CoV-2 nsp10/nsp16 2′-O-methylase and its implication on antiviral drug design. Signal Transduction and Targeted Therapy 5: 1-4.
  • Littler DR, Gully BS, Colson RN, Rossjohn J (2020). Crystal structure of the SARS-CoV-2 non-structural protein 9, Nsp9. Iscience 23: 101258.
  • Liu C, Boland S, Scholle MD, Bardiot D, Marchand A et al. (2021). Dual inhibition of SARS-CoV-2 and human rhinovirus with protease inhibitors in clinical development. Antiviral Research 187: 105020.
  • Lu G, Zhang X, Zheng W, Sun J, Hua L, Xu L et al. (2020). Development of a simple in vitro assay to identify and evaluate nucleotide analogs against SARS-CoV-2 RNA-dependent RNA polymerase. Antimicrobial Agents and Chemotherapy 65.
  • Ma C, Sacco MD, Hurst B, Townsend JA, Hu Y et al. (2020). Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Research 30: 678-692.
  • Maio N, Lafont BAP, Sil D, Li Y, Bollinger JM et al. (2021). Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets. Science eabi5224 Mali SN (2020). The rise of new coronavirus infection-(COVID-19): a recent update. Eurasian Journal of Medicine and Oncology .
  • Matsuyama S, Kawase M, Nao N, Shirato K, Ujike M et al. (2020). The Inhaled steroid ciclesonide blocks SARS-CoV-2 RNA replication by targeting the viral replication-transcription complex in cultured cells. Journal of Virology 95 (1): e01648- 20. doi: 10.1128/JVI.01648-20.
  • McClain CB, Vabret N (2020). SARS-CoV-2: the many pros of targeting PLpro. Signal Transduction and Targeted Therapy 5. Mengist HM, Dilnessa T, Jin T (2021). Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Frontiers in Chemistry 9.
  • Mengist HM, Fan X, Jin T (2020). Designing of improved drugs for COVID-19: crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduction and Targeted Therapy 5.
  • Mutlu O, Ugurel OM, Sariyer E, Ata O, Inci TG et al. (2020). Targeting SARS-CoV-2 Nsp12/Nsp8 interaction interface with approved and investigational drugs: an in silico structurebased approach. Journal of Biomolecular Structure and Dynamics 1-13.
  • Naydenova K, Muir KW, Wu L-F, Zhang Z, Coscia F et al. (2021). Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proceedings of the National Academy of Sciences 118: e2021946118.
  • Osipiuk J, Azizi S-A, Dvorkin S, Endres M, Jedrzejczak R et al. (2021). Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nature communications 12:1-9
  • Pandey P, Prasad K, Prakash A, Kumar V (2020). Insights into the biased activity of dextromethorphan and haloperidol towards SARS-CoV-2 NSP6: in silico binding mechanistic analysis. Journal of Molecular Medicine 98: 1659-1673.
  • Paul AV, Wimmer E (2015). Initiation of protein-primed picornavirus RNA synthesis. Virus Research 206: 12-26.
  • Peng Q, Peng R, Yuan B, Zhao J, Wang M et al. (2020). Structural and biochemical characterization of the nsp12-nsp7-nsp8 core polymerase complex from SARS-CoV-2. Cell Reports 31: 107774.
  • Perveen S, Khalili Yazdi A, Devkota K, Li F, Ghiabi P et al. (2021). A high-throughput RNA displacement assay for screening SARSCoV-2 nsp10-nsp16 complex toward developing therapeutics for COVID-19. SLAS DISCOVERY: sdvancing the Science of Drug Discovery 26: 620-627.
  • Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E (2020). COVID-19, SARS and MERS: are they closely related? Clinical Microbiology and Infection 26: 729-734.
  • Pitsillou E, Liang J, Ververis K, Lim KW, Hung A et al. (2020). Identification of Small molecule inhibitors of the deubiquitinating activity of the SARS-CoV-2 papain-like protease: in silico molecular docking studies and in vitro enzymatic activity assay. Frontiers in Chemistry 8.
  • Pruijssers AJ, Denison MR (2019). Nucleoside analogues for the treatment of coronavirus infections. Current Opinion in Virology 35: 57-62.
  • Qiao J, Li Y-S, Zeng R, Liu F-L, Luo R-H et al. (2021). SARS-CoV-2 Mpro inhibitors with antiviral activity in a transgenic mouse model. Science 371: 1374-1378.
  • Rathnayake AD, Zheng J, Kim Y, Perera KD, Mackin S et al. (2020). 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV–infected mice. Science Translational Medicine 12: eabc5332.
  • Ratia K, Saikatendu KS, Santarsiero BD, Barretto N, Baker SC et al. (2006). Severe acute respiratory syndrome coronavirus papainlike protease: structure of a viral deubiquitinating enzyme. Proceedings of the National Academy of Sciences 103: 5717- 5722.
  • Riva L, Yuan S, Yin X, Martin-Sancho L, Matsunaga N et al. (2020). A Large-scale Drug Repositioning Survey for SARS-CoV-2 Antivirals. bioRxiv.
  • Riva L, Yuan S, Yin X, Martin-Sancho L, Matsunaga N et al. (2020). Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature 586: 113-119.
  • Rodriguez-Torres M, Lawitz E, Kowdley KV, Nelson DR, DeJesus E et al. (2013). Sofosbuvir (GS-7977) plus peginterferon/ ribavirin in treatment-naïve patients with HCV genotype 1: a randomized, 28-day, dose-ranging trial. Journal of Hepatology 58: 663-668.
  • Sakai Y, Kawachi K, Terada Y, Omori H, Matsuura Y et al. (2017). Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication. Virology 510: 165-174.
  • Schoggins JW, Rice CM (2011). Interferon-stimulated genes and their antiviral effector functions. Current Opinion in Virology 1: 519-525.
  • Sharma M, Prasher P, Mehta M, Zacconi FC, Singh Y et al. (2020). Probing 3CL protease: rationally designed chemical moieties for COVID‐19. Drug Development Research 81: 911-918.
  • Sharun K, Tiwari R, Dhama K (2021). Protease inhibitor GC376 for COVID-19: lessons learned from feline infectious peritonitis. Annals of Medicine and Surgery 61: 122-125.
  • Sheahan TP, Sims AC, Zhou S, Graham RL, Hill CS et al. (2020). An orally bioavailable broad-spectrum antiviral inhibits SARSCoV-2 and multiple endemic, epidemic and bat coronavirus. bioRxiv 2020. 2003.2019.997890
  • Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ et al. (2020). An orally bioavailable broad-spectrum antiviral inhibits SARSCoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Science Translational Medicine 12: eabb5883.
  • Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K et al. (2020). Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587: 657-662.
  • Sies H, Parnham MJ (2020). Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radical Biology and Medicine 156: 107-112.
  • Su H, Yao S, Zhao W, Li M, Liu J et al. (2020). Discovery of baicalin and baicalein as novel, natural product inhibitors of SARSCoV-2 3CL protease in vitro. BioRxiv.
  • Subissi L, Imbert I, Ferron F, Collet A, Coutard B et al. (2014a). SARS-CoV ORF1b-encoded nonstructural proteins 12–16: replicative enzymes as antiviral targets. Antiviral Research 101: 122-130.
  • Subissi L, Posthuma CC, Collet A, Zevenhoven-Dobbe JC, Gorbalenya AE et al. (2014b). One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proceedings of the National Academy of Sciences 111: E3900-E3909.
  • Suryawanshi RK, Koganti R, Agelidis A, Patil CD, Shukla D (2021). Dysregulation of cell signaling by SARS-CoV-2. Trends in Microbiology 29: 224-237.
  • Taştan C, Yurtsever B, Sir Karakuş G, Dilek Kançağı D, Demir S et al. (2020). SARS-CoV-2 isolation and propagation from Turkish COVID-19 patients. Turkish Journal of Biology 44: 192-202. Te Velthuis AJW, Van Den Worm SHE, Snijder EJ (2012). The SARScoronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Research 40:1737-1747
  • Tidu A, Janvier A, Schaeffer L, Sosnowski P, Kuhn L et al. (2021). The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. Rna 27: 253-264.
  • Ullrich S, Nitsche C (2020). The SARS-CoV-2 main protease as drug target. Bioorganic & Medicinal Chemistry Letters 30: 127377. van Dijk AA, Makeyev EV, Bamford DH (2004). Initiation of viral RNA-dependent RNA polymerization. Journal of General Virology 85: 1077-1093.
  • Vuong W, Fischer C, Khan MB, Van Belkum MJ, Lamer T et al. (2021). Improved SARS-CoV-2 Mpro inhibitors based on feline antiviral drug GC376: structural enhancements, increased solubility, and micellar studies. European Journal of Medicinal Chemistry 222:113584
  • Vuong W, Khan MB, Fischer C, Arutyunova E, Lamer T et al. (2020). Feline coronavirus drug inhibits the main protease of SARSCoV-2 and blocks virus replication. Nature Communications 11.
  • Wang C-W, Klionsky DJ (2003). The molecular mechanism of autophagy. Molecular Medicine 9: 65-76.
  • Wang M, Cao R, Zhang L, Yang X, Liu J et al. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research 30: 269-271.
  • Wang Q, Wu J, Wang H, Gao Y, Liu Q et al. (2020). Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell 182: 417-428. e413.
  • Wang Y, Lv Z, Chu Y (2015). HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV/AIDS - Research and Palliative Care 95.
  • Warren TK, Wells J, Panchal RG, Stuthman KS, Garza NL et al. (2014). Protection against filovirus diseases by a novel broadspectrum nucleoside analogue BCX4430. Nature 508: 402-405.
  • White MA, Lin W, Cheng X (2020). Discovery of COVID-19 inhibitors targeting the SARS-CoV-2 Nsp13 helicase. The Journal of Physical Chemistry Letters 11: 9144-9151.
  • Xie M, Chen Q (2020). Insight into 2019 novel coronavirus — an updated interim review and lessons from SARS-CoV and MERS-CoV. International Journal of Infectious Diseases 94: 119-124.
  • Yoshimoto FK (2020). The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. The Protein Journal 39: 198-216.
  • Ysrafil Y, Astuti I, Mus R, Gama NI, Rahmaisyah D et al. (2020). A summary of coronavirus disease 2019: what we should know? Pharmaceutical Sciences 26: S24-S35.
  • Yuen C-K, Lam J-Y, Wong W-M, Mak L-F, Wang X et al. (2020). SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerging Microbes & Infections 9: 1418-1428.
  • Zhang C-h, Wang Y-f, Liu X-j, Lu J-H, Qian C-w et al. (2005). Antiviral activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro. Chinese medical journal 118: 493-496.
  • Zhang L, Lin D, Sun X, Curth U, Drosten C et al. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368: 409- 412.
  • Zhu W, Shyr ZA, Lo DC, Zheng W (2021). Viral proteases as targets for COVID-19 drug development. Journal of Pharmacology and Experimental Therapeutics JPET-MR-2021-000688
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Novel approaches for COVID-19 diagnosis and treatment: a nonsystematic review

Mehmet Dinçer BİLGİN, Hakan KAYGUSUZ, Şebnem GARİP USTAOĞLU, Feride SEVERCAN

Genomic chronicle of SARS-CoV-2: a mutational analysis with over 1 million genome sequences

Oğuz ATA, Osman Mutluhan UĞUREL, Dilek TURGUT BALIK

Binary-QSAR guided virtual screening of FDA approved drugs and compounds in clinical investigation against SARS-CoV-2 main protease

Serdar DURDAĞI, Yeşim YUMAK, Lalehan OKTAY, Ece ERDEMOĞLU, İlayda TOLU, Ayşenur ÖZCAN, Elif ACAR, Şehriban BÜYÜKKILIÇ, Alpsu OLKAN

CoronaVac (Sinovac) COVID-19 vaccine-induced molecular changes in healthy human serum by infrared spectroscopy coupled with chemometrics

Rafig GURBANOV, Feride SEVERCAN, Ayca DOĞAN, Mete SEVERCAN

The potential use of Drosophila as an in vivo model organism for COVID-19-related research: a review

Eşref DEMİR

Treatment of COVID-19 patients with quercetin: a prospective, single center, randomized, controlled trial

Hasan ÖNAL, Seda YILMAZ SEMERCİ, Mehmet Eren KURNAZ, Nurettin SÜNER, Ali KOCATAŞ, Bengü ARSLAN, Nurcan ÜÇÜNCÜ ERGUN, Şeyma TOPUZ, Yulet Miray MOLU, Mehmet Abdussamet BOZKURT

Targeting CoV-2 spike RBD and ACE-2 interaction with flavonoids of Anatolian propolis by in silico and in vitro studies in terms of possible COVID-19 therapeutics

Zehra CAN, Yakup KARA, Sevgi KOLAYLI, Oktay YILDIZ, Halil İbrahim GÜLER, Fulya AY ŞAL, Sabriye ÇANAKÇI, Ali Osman BELDÜZ

Determination of the interaction between the receptor binding domain of 2019-nCoV spike protein, TMPRSS2, cathepsin B and cathepsin L, and glycosidic and aglycon forms of some flavonols

Erman Salih İSTİFLİ, Bektaş TEPE, Cengiz SARIKÜRKCÜ, Arzuhan ŞIHOĞLU TEPE, Paulo A. NETZ, İbrahim Halil KILIÇ

Host variations in SARS-CoV-2 infection

Pelin KILIÇ, Devrim DEMİR DORA, Evrim GÜNEŞ ALTUNTAŞ, Zeynep Yağmur KARAGÜLLEOĞLU, Güldane CENGİZ SEVAL, Hanife Ayşegül MENDİ, Doruk ALTIOK, Elif Zeynep SAVCI, Büşra ÖZKARA, Gizem TUNÇER, Buğrahan Regaip KILINÇ, Evren SUİÇMEZ, Güneysu ÇETİN, Dilruba Beyza UNCUOĞLU, Cansu TEKELİ, Vahdi Umut BENGİ, Si

In silico drug repositioning against human NRP1 to block SARS-CoV-2 host entry

Şeref GÜL