An update comprehensive review on the status of COVID-19: vaccines, drugs, variants and neurological symptoms

Various recently reported mutant variants, candidate and urgently approved current vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many current situations with severe neurological damage and symptoms as well as respiratory tract disorders have begun to be reported. In particular, drug, vaccine, and neutralizing monoclonal antibodies (mAbs) have been developed and are currently being evaluated in clinical trials. Here, we review lessons learned from the use of novel mutant variants of the COVID-19 virus, immunization, new drug solutions, and antibody therapies for infections. Next, we focus on the B 1.1.7, B 1.351, P.1, and B.1.617 lineages or variants of concern that have been reported worldwide, the new manifestations of neurological manifestations, the current therapeutic drug targets for its treatment, vaccine candidates and their efficacy, implantation of convalescent plasma, and neutralization of mAbs. We review specific clinical questions, including many emerging neurological effects and respiratory tract injuries, as well as new potential biomarkers, new studies in addition to known therapeutics, and chronic diseases of vaccines that have received immediate approval. To answer these questions, further understanding of the burden kinetics of COVID-19 and its correlation with neurological clinical outcomes, endogenous antibody responses to vaccines, pharmacokinetics of neutralizing mAbs, and action against emerging viral mutant variants is needed.

___

  • Almubaid Z, Al-Mubaid H. (2021). Analysis and comparison of genetic variants and mutations of the novel coronavirus SARS-CoV-2. Gene Reports 23: 101064. doi: 10.1016/j. genrep.2021.101064
  • Antony AR, Haneef Z (2020). Systematic review of EEG findings in 617 patients diagnosed with COVID-19. Seizure. 83: 234-241. doi: 10.1016/j.seizure.2020.10.014
  • Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S et al. (2021). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New England Journal of Medicine 384 (5): 403-416. doi: 10.1056/nejmoa2035389
  • Baig AM, Khaleeq A, Ali U, Syeda H (2020). Evidence of the COVID-19 virus targeting the CNS: tissue distribution, hostvirus interaction, and proposed neurotropic mechanisms. ACS Chemical Neuroscience 11 (7): 995-998. doi: 10.1021/ acschemneuro.0c00122
  • Beigel JH (2018). Polyclonal and monoclonal antibodies for the treatment of influenza. Current Opinion in Infectious Diseases, 31 (6): 527-534. doi: 10.1097/QCO.0000000000000499
  • Boehm E, Kronig I, Neher RA, Eckerle I, Vetter P et al. (2021). Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clinical Microbiology and Infection. doi: 10.1016/j. cmi.2021.05.022
  • Cai Q, Yang M, Liu D, Chen J, Shu D et al. (2020). Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering. doi: 10.1016/j.eng.2020.03.007
  • Callejon-Leblic MA, Moreno-Luna R, Del Cuvillo A, Reyes-Tejero IM, Garcia-Villaran MA et al. (2021). Loss of smell and taste can accurately predict COVID-19 infection: a machinelearning approach. Journal of Clinical Medicine 10 (4): 570. doi: 10.3390/jcm10040570
  • Charkiewicz R, Nikliński J, Biecek P, Kiśluk J, Pancewicz S et al. (2021). The first SARS-CoV-2 genetic variants of concern (VOC) in Poland: The concept of a comprehensive approach to monitoring and surveillance of emerging variants. Advances in Medical Sciences 66 (2): 237-245. doi: 10.1016/j. advms.2021.03.005
  • Chen X, Laurent S, Onur OA, Kleineberg NN, Fink GR et al. (2021). A systematic review of neurological symptoms and complications of COVID-19. Journal of Neurology 268 (2): 392-402. doi: 10.1007/s00415-020-10067-3
  • Cheng MH, Krieger JM, Kaynak B, Arditi M, Bahar I (2021). Impact of South African 501.V2 variant on SARS-CoV-2 spike infectivity and neutralization: A structure-based computational assessment. BioRxiv. doi: 10.1101/2021.01.10.426143
  • Collier DA, De Marco A, Ferreira IATM, Meng B, Datir RP et al. (2021). Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccineelicited antibodies. Nature 593: 136-141. doi: 10.1038/s41586- 021-03412-7
  • Coutinho RM, Marquitti FMD, Ferreira LS, Borges ME, da Silva RLP et al. (2021). Model-based evaluation of transmissibility and reinfection for the P.1 variant of the SARS-CoV-2. MedRxiv. doi: 10.1101/2021.03.03.21252706
  • Davoudi-Monfared E, Rahmani H, Khalili H, Hajiabdolbaghi M, Salehi M et al. (2020). A randomized clinical trial of the efficacy and safety of interferon β-1a in treatment of severe COVID-19. Antimicrobial Agents and Chemotherapy 64 (9): 1-14. doi: 10.1128/AAC.01061-20
  • Dastan F, Alireza S, Saffaei A, Marjani M, Moniri A (2020). Subcutaneous administration of interferon beta-1a for COVID-19: A non-controlled prospective trial Farzaneh. International Immunopharmacology Journal 85. doi: 10.1016/j. intimp.2020.106688
  • Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ et al. (2021). Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372 (6538): eabg3055. doi: 10.1126/science.abg3055
  • De Stefano P, Nencha U, De Stefano L, Mégevand P, Seeck M et al. (2020). Focal EEG changes indicating critical illness associated cerebral microbleeds in a Covid-19 patient. Clinical Neurophysiology Practice 5: 125-129. doi: 10.1016/j. cnp.2020.05.004
  • Dejnirattisai W, Zhou D, Supaşa P, Liu C, Mentzer AJ, Ginn HM et al. (2021). Antibody evasion by the P.1 strain of SARS-CoV-2. Cell 184 (11): 2939-2954. doi: 10.1016/j.cell.2021.03.055
  • Deshpande SV, Mali DP (2020). Reverse transcriptase inhibitors: Potential drug delivery combating COVID-19. International Journal of Pharmaceutical Chemistry and Analysis. doi: 10.18231/j.ijpca.2020.026
  • Dixon L, Varley J, Gontsarova A, Mallon D, Tona F et al. (2020). COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anemia. Neurology(R) Neuroimmunology & Neuroinflammation 7 (5): 1-6. doi: 10.1212/NXI.0000000000000789
  • Dong M, Zhang J, Ma X, Tan J, Chen L et al. (2020). ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomedicine and Pharmacotherapy 131: 110678. doi: 10.1016/j.biopha.2020.110678
  • Engelman KD, Engelman AN (2021). D614G and SARS-CoV-2 replication fitness. Signal Transduction and Targeted Therapy 6 (1): 99. doi: 10.1038/s41392-021-00498-3
  • Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS et al. (2021). Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. 821: 815-821.
  • Fraiman P, Godeiro Junior, C, Moro E, Cavallieri F, Zedde M (2020). COVID-19 and cerebrovascular diseases: a systematic review and perspectives for stroke management. Frontiers in Neurology 11: 574694. doi: 10.3389/fneur.2020.574694
  • Francisco R da S, Benites LF, Lamarca AP, de Almeida LGP, Hansen AW et al. (2021). Pervasive transmission of E484K and emergence of VUI-NP13L with evidence of SARS-CoV-2 coinfection events by two different lineages in Rio Grande do Sul, Brazil. Virus Research 296. doi: 10.1016/j.virusres.2021.198345
  • Franke C, Ferse C, Kreye J, Reincke SM, Sanchez-Sendin E et al. (2021). High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain, Behavior, and Immunity 93 (December 2020): 415-419. doi: 10.1016/j.bbi.2020.12.022
  • Frediansyah A, Tiwari R, Sharun K, Dhama K, Harapan H (2021). Antivirals for COVID-19: A critical review. Clinical Epidemiology and Global Health. doi: 10.1016/j. cegh.2020.07.006
  • Freeman CW, Masur J, Hassankhani A, Wolf RL, Levine JM et al. (2021). Coronavirus disease (COVID-19)-related disseminated leukoencephalopathy: a retrospective study of findings on brain MRI. American Journal of Roentgenology 216 (4): 1046- 1047. doi: 10.2214/AJR.20.24364
  • Galanopoulou AS, Ferastraoaru V, Correa DJ, Cherian K, Duberstein S et al. (2020). EEG findings in acutely ill patients investigated for SARS-CoV-2/COVID-19: A small case series preliminary report. Epilepsia Open 5 (2): 314-324. doi: 10.1002/epi4.12399
  • Gattinger P, Borochova K, Dorofeeva Y, Henning R, Kiss R et al. (2021). Antibodies in serum of convalescent patients following mild COVID-19 do not always prevent virus-receptor binding. Allergy: European Journal of Allergy and Clinical Immunology 76 (3): 878-883. doi: 10.1111/all.14523
  • Gómez CE, Perdiguero B, Esteban M (2021). Emerging sars-cov-2 variants and impact in global vaccination programs against sars-cov-2/covid-19. Vaccines 9 (3): 1-13. doi: 10.3390/ vaccines9030243
  • Goncalves Cabecinhas AR, Roloff T, Stange M, Bertelli C, Huber M et al. (2021). Sars-cov-2 n501y introductions and transmissions in switzerland from beginning of october 2020 to february 2021—implementation of swiss-wide diagnostic screening and whole genome sequencing. Microorganisms 9 (4). doi: 10.3390/microorganisms9040677
  • Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M (2020). The antiviral compound remdesivir potently inhibits RNAdependent RNA polymerase from Middle East respiratory syndrome coronavirus. Journal of Biological Chemistry. doi: 10.1074/jbc.AC120.013056
  • Graci JD, Cameron CE (2006). Mechanisms of action of ribavirin against distinct viruses. Reviews in Medical Virology doi: 10.1002/rmv.483
  • Haffizulla J, Hartman A, Hoppers M, Resnick H, Samudrala S et al. (2014). Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: A double-blind, randomised, placebo-controlled, phase 2b/3 trial. The Lancet Infectious Diseases. doi: 10.1016/S1473-3099(14)70717-0
  • Hansen J, Baum A, Pascal KE, Russo V, Giordano S et al. (2020). Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science 369 (6506): 1010- 1014. doi: 10.1126/science.abd0827
  • He F, Deng Y, Li W (2020). Coronavirus disease 2019: What we know? Journal of Medical Virology 92 (7): 719-725. doi: 10.1002/jmv.25766
  • Hoffmann M, Arora P, Groß R, Seidel A, Hörnich BF et al. (2021). SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell 184(9): 2384-2393.e12. doi: 10.1016/j. cell.2021.03.036
  • Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T et al. (2020a). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181 (2): 271-280.e8. doi: 10.1016/j. cell.2020.02.052
  • Hoffmann M, Kleine-Weber H, Pöhlmann S (2020b). A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Molecular Cell 78 (4): 779-784. e5. doi: 10.1016/j.molcel.2020.04.022
  • Hurt AC, Wheatley AK (2021). Neutralizing antibody therapeutics for COVID-19. Viruses 13(4) 1-15. doi: 10.3390/v13040628
  • Jangra S, Ye C, Rathnasinghe R, Stadlbauer D, Krammer F et al. (2021). The E484K mutation in the SARS-CoV-2 spike protein reduces but does not abolish neutralizing activity of human convalescent and post-vaccination sera. MedRxiv.
  • Jiang Y, Chen D, Cai D, Yi Y, Jiang S (2021). Effectiveness of remdesivir for the treatment of hospitalized COVID-19 persons: A network meta-analysis. Journal of Medical Virology. doi: 10.1002/jmv.26443
  • Ju B, Zhang Q, Ge J, Wang R, Sun J et al. (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584 (7819): 115-119. doi: 10.1038/s41586-020-2380-z
  • Kelleni MT (2020). Nitazoxanide/azithromycin combination for COVID-19: A suggested new protocol for early management. Pharmacological Research. doi: 10.1016/j.phrs.2020.104874
  • Khan S, Siddique R, Shereen MA, Ali A, Liu J et al. (2020). The emergence of a novel coronavirus (SARS-CoV-2), their biology and therapeutic options. Journal of Clinical Microbiology 23; 58 (5): e00187-20. doi: 10.1128/JCM.00187-20
  • Kim JH, Marks F, Clemens JD (2021). Looking beyond COVID-19 vaccine phase 3 trials. Nature Medicine 27 (2): 205-211 doi: 10.1038/s41591-021-01230-y
  • Kocayiğit H, Özmen Süner K, Tomak Y, Demir G, Yaylacı S et al. (2021). Observational study of the effects of Favipiravir vs Lopinavir/Ritonavir on clinical outcomes in critically Ill patients with COVID-19. Journal of Clinical Pharmacy and Therapeutics 46: 454-459. doi: 10.1111/jcpt.13305
  • Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J et al. (2020). Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell 182 (4): 812- 827.e19. doi: 10.1016/j.cell.2020.06.043
  • Kubota T, Gajera PK, Kuroda N (2021). Meta-analysis of EEG findings in patients with COVID-19. Epilepsy Behavior 115: 107682. doi: 10.1016/j.yebeh.2020.107682.
  • Lambrecq V, Hanin A, Munoz-Musat E, Chougar L, Gassama S et al. (2021). Association of clinical, biological, and brain magnetic resonance imaging findings with electroencephalographic findings for patients with COVID-19. JAMA Network Open 4 (3): 1-14. doi: 10.1001/jamanetworkopen.2021.1489
  • Lamprou DA (2020). Emerging technologies for diagnostics and drug delivery in the fight against COVID-19 and other pandemics. Expert Review of Medical Devices doi: 10.1080/17434440.2020.1792287
  • Lewis A, Frontera J, Placantonakis DG, Lighter J, Galetta S et al. (2021). Cerebrospinal fluid in COVID-19: A systematic review of the literature. Journal of the Neurological Sciences 15 (421): 117316. doi: 10.1016/j.jns.2021.117316
  • Lin L, Al-Faraj A, Ayub N, Bravo P, Das S et al. (2021). Electroencephalographic abnormalities are common in COVID-19 and are associated with outcomes. Annals of Neurology 89 (5): 872-883. doi: 10.1002/ana.26060
  • Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV et al. (2021). Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. The Lancet 397 (10275): 671-681. doi: 10.1016/ S0140-6736(21)00234-8
  • Luan B, Wang H, Huynh T (2021). Enhanced binding of the N501Ymutated SARS-CoV-2 spike protein to the human ACE2 receptor: insights from molecular dynamics simulations. FEBS Letters 595 (10): 1454-1461. doi: 10.1002/1873-3468.14076
  • Mahammedi A, Saba L, Vagal A, Leali M, Rossi A et al. (2020). Imaging of neurologic disease in hospitalized patients with COVID-19: An italian multicenter retrospective observational study. Radiology 297 (2): E270-E273. doi: 10.1148/ RADIOL.2020201933
  • Meppiel E, Peiffer-Smadja N, Maury A, Bekri I, Delorme C et al. (2021). Neurologic manifestations associated with COVID-19: a multicentre registry. Clinical Microbiology and Infection 27 (3): 458-466. doi:10.1016/j.cmi.2020.11.005
  • Meunier N, Briand L, Jacquin-Piques A, Brondel L, Pénicaud L (2021). COVID 19-induced smell and taste impairments: putative impact on physiology. Frontiers in Physiology 11 (January): 1-12. doi: 10.3389/fphys.2020.625110
  • Mutiawati E, Fahriani M, Mamada SS, Fajar JK, Frediansyah A et al. (2021). Anosmia and dysgeusia in SARS-CoV-2 infection: Incidence and effects on COVID-19 severity and mortality, and the possible pathobiology mechanisms- a systematic review and meta-analysis. F1000Research 10: 1-28. doi: 10.12688/ f1000research.28393.1
  • Oral HB, Akdiş CA, Özakin C (2002). Back to the future: Antibodybased strategies for the treatment of infectious diseases. Applied Biochemistry and Biotechnology- Part B Molecular Biotechnology 21 (3): 225-239. doi: 10.1385/MB:21:3:225
  • Owji H, Negahdaripour M, Hajighahramani N (2020). Immunotherapeutic approaches to curtail COVID-19. International Immunopharmacology 88 (July): 106924. doi: 10.1016/j.intimp.2020.106924
  • Ozono S, Zhang Y, Ode H, Sano K, Tan TS et al. (2021). SARSCoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nature Communications 12 (1). doi: 10.1038/s41467-021-21118-2
  • Paliwal VK, Garg RK, Gupta A, Tejan N (2020). Neuromuscular presentations in patients with COVID-19. Neurological Sciences 41 (11): 3039-3056. doi: 10.1007/s10072-020-04708-8
  • Pastuch-Gawołek G, Gillner D, Król E, Walczak K, Wandzik I (2019). Selected nucleos(t)ide-based prescribed drugs and their multi-target activity. European Journal of Pharmacology. doi: 10.1016/j.ejphar.2019.172747
  • Pearson CA, Russell TW, Davies NG, Kucharski AJ, CMMID COVID-19 working group et al. (2021). Estimates of severity and transmissibility of novel South Africa SARS-CoV-2 variant 501Y.V2. Preprint 50: 1-4.
  • Pennisi M, Lanza G, Falzone L, Fisicaro F, Ferri R et al. (2020). Sars-cov-2 and the nervous system: From clinical features to molecular mechanisms. International Journal of Molecular Sciences 21 (15): 1-21. doi: 10.3390/ijms21155475
  • Plante JA, Liu Y, Liu J, Xia H, Johnson BA et al. (2021). Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592 (7852): 116-121. doi: 10.1038/s41586-020-2895-3
  • Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A et al. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England Journal of Medicine, 383 (27): 2603-2615. doi: 10.1056/nejmoa2034577
  • Public Health England (2020). Investigation of novel SARSCOV-2 variant Variant of Concern 202012 / 01 Detection of an epidemiological cluster associated with a new variant of concern Nomenclature of variants in the UK Current epidemiological findings. December, 1-11.
  • Public Health England (2021). SARS-CoV-2 variants of concern and variants under investigation in England: technical briefing 10. 8: 1-50.
  • Radzikowska U, Ding M, Tan G, Zhakparov D, Peng Y et al. (2020). Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. In Allergy: European Journal of Allergy and Clinical Immunology 75 (11). doi: 10.1111/all.14429
  • Reichard RR, Kashani KB, Boire NA, Constantopoulos E, Guo Y et al. (2020). Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathologica 140 (1): 1-6. doi: 10.1007/ s00401-020-02166-2
  • Roche JA, Roche R (2020). A hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications. FASEB Journal 34 (6): 7265-7269. doi: 10.1096/fj.202000967
  • Rossignol JF (2014). Nitazoxanide: A first-in-class broad-spectrum antiviral agent. Antiviral Research 110 94-103. doi: 10.1016/j. antiviral.2014.07.014
  • Saha P, Banerjee AK, Tripathi PP, Srivastava AK, Ray U (2020). A virus that has gone viral: Amino acid mutation in S protein of Indian isolate of Coronavirus COVID-19 might impact receptor binding, and thus, infectivity. Bioscience Reports 40 (5): 1-8. doi: 10.1042/BSR20201312
  • Salcan İ, Karakeçili F, Salcan S, Ünver E, Akyüz S et al. (2021). Is taste and smell impairment irreversible in COVID-19 patients? European Archives of Oto-Rhino-Laryngology 278 (2): 411- 415. doi: 10.1007/s00405-020-06560-0
  • Sallenave JM, Guillot L (2020). Innate immune signaling and proteolytic pathways in the resolution or exacerbation of SARS-CoV-2 in Covid-19: key therapeutic targets? Frontiers in Immunology 11 (May): 1-9. doi: 10.3389/fimmu.2020.01229
  • Sanjuán R, Domingo-Calap P (2016). Mechanisms of viral mutation. Cellular and Molecular Life Sciences 73 (23): 4433-4448. doi: 10.1007/s00018-016-2299-6
  • Shang J, Wan Y, Luo C, Ye G, Geng Q et al. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America 117 (21). doi: 10.1073/pnas.2003138117
  • Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE et al. (2017). Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine 9 (396): eaal3653. doi: 10.1126/scitranslmed.aal3653
  • Taher T, Sheikh AB, Anwar F, Khosa F (2021). SARS-CoV-2: its potential neurological manifestations and plausible mechanism: a review article. Acta Neurologica Belgica 121 (2): 331-339. doi: 10.1007/s13760-020-01577-y
  • Taquet M, Luciano S, Geddes JR, Harrison PJ (2021). Differential follow-up patterns in COVID-19 and comparison cohorts – Authors’ reply. The Lancet Psychiatry, 8 (5): 360-361. doi: 10.1016/S2215-0366(21)00076-6
  • Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V et al. (2020). Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARSCoV-2) lineage with multiple spike mutations in South Africa. MedRxiv, 2. doi: 10.1101/2020.12.21.20248640
  • Tian X, Li C, Huang A, Xia S, Lu S (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirusspecific human monoclonal antibody. BioRxiv, 9. doi: 10.1101/2020.01.28.923011
  • Twomey JD, Luo S, Dean AQ, Bozza WP, Nalli A et al. (2020). COVID-19 update: The race to therapeutic development. Drug Resistance Updates, 53 (September): 100733. doi: 10.1016/j. drup.2020.100733
  • Van de Veerdonk FL, Netea MG, van Deuren M, van der Meer JW M, de Mast Q, et al. (2020). Kallikrein-kinin blockade in patients with covid-19 to prevent acute respiratory distress syndrome. ELife 9: 1-9. doi: 10.7554/ELIFE.57555
  • Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM et al. (2021). Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet 397 (10269): 99-111. doi: 10.1016/S0140- 6736(20)32661-1
  • Waissengrin B, Agbarya A, Safadi E, Padova H, Wolf I (2021). Shortterm safety of the BNT162b2 mRNA COVID-19 vaccine in patients with cancer treated with immune checkpoint inhibitors. The Lancet Oncology 22 (5): 581-583. doi: 10.1016/ S1470-2045(21)00155-8
  • Walls A, Park Y-J, Tortorici MA, Wall A, McGuire A et al. (2020). Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. doi: 10.1101/2020.02.19.956581
  • Wang M, Cao R, Zhang L, Yang X, Liu J et al. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research. doi: 10.1038/ s41422-020-0282-0
  • Wang P, Nair MS, Liu L, Iketani S, Luo Y et al. (2021). Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593 (7857): 130-135. doi: 10.1038/s41586-021-03398-2
  • Wildwing T, Holt N (2021). The neurological symptoms of COVID-19: a systematic overview of systematic reviews, comparison with other neurological conditions and implications for healthcare services. Therapeutic Advances in Chronic Disease 12. doi: 10.1177/2040622320976979
  • World Health Organization (2021a). COVID-19 Weekly Epidemiological Update 22: Special edition: Proposed working definitions of SARS-CoV-2 Variants of Interest and Variants of Concern. 25 February 2021.
  • World Health Organization (2021b). CO COVID-19 Weekly Epidemiological Update Edition 41, published 25 May 2021. World Health Organization (2021c). COVID-19 Weekly Epidemiological Update Data as received by WHO from national authorities, as of 9 May 2021, 10 am CET
  • Wu Y, Wang F, Shen C, Peng W, Li D et al. (2020). A non-competing pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. MedRxiv 1278 (June): 1274- 1278. doi: 10.1101/2020.05.01.20077743
  • Xie X, Liu Y, Liu J, Zhang X, Zou J et al. (2021). Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nature Medicine 27 (4): 620-621. doi: 10.1038/s41591-021-01270-4
  • Yassin A, Nawaiseh M, Shaban A, Alsherbini K, El-Salem K et al. (2021). Neurological manifestations and complications of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. BMC Neurology 21 (1): 1-17. doi: 10.1186/ s12883-021-02161-4
  • Yin W, Luan X, Li Z, Xie Y, Zhou Z et al. (2020). Structural basis for repurpose and design of nucleoside drugs for treating COVID-19. BioRxiv
  • Yuan M, Wu NC, Zhu X, Lee CCD, So RTY et al. (2020). A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. BioRxiv 633 (May): 630-633. doi: 10.1101/2020.03.13.991570
  • Yurdakök Dikmen B, Pat Y, Dilekoz E, Summak GY, Kul O et al. (2020). Pharmacotherapy of COVID-19. Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni (in Turkish with an abstract in English). doi: 10.38137/vetfarmatoksbulten.769889
  • Zhao S, Lou J, Cao L, Zheng H, Chong MKC et al. (2021). Quantifying the transmission advantage associated with N501Y substitution of SARS-CoV-2 in the UK: an early datadriven analysis. Journal of Travel Medicine 28 (2): 1-3. doi: 10.1093/jtm/taab011
  • Zheng M, Song L (2020). Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cellular and Molecular Immunology 17 (5): 536- 538. doi: 10.1038/s41423-020-0385-z
  • Zhou B, Thao TTN, Hoffmann D, Taddeo A, Ebert N et al. (2021). SARS-CoV-2 spike D614G change enhances replication and transmission. Nature 592 (7852): 122-127. doi: 10.1038/ s41586-021-03361-1
  • Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE (2020). Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurology 77 (8): 1018-1027. doi: 10.1001/ jamaneurol.2020.2065
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

The effect of weekend curfews on epidemics: a Monte Carlo simulation

Hakan KAYGUSUZ, A. Nihat BERKER

Neuropathy in COVID-19 associated with dysbiosis-related inflammation

Belma ASLIM, Büşra AKTAŞ

Cannabinoids for SARS-CoV-2 and is there evidence of their therapeutic efficacy?

Veysel SÜZERER, İsmail YENER, Abdulselam ERTAŞ, Mustafa Abdullah YILMAZ, Remzi EKİNCİ, Emine AYAZ TİLKAT, Sevgi İRTEGÜN KANDEMİR, Ahmet ONAY, Nesrin BOZHAN

Targeting CoV-2 spike RBD and ACE-2 interaction with flavonoids of Anatolian propolis by in silico and in vitro studies in terms of possible COVID-19 therapeutics

Zehra CAN, Yakup KARA, Sevgi KOLAYLI, Oktay YILDIZ, Halil İbrahim GÜLER, Fulya AY ŞAL, Sabriye ÇANAKÇI, Ali Osman BELDÜZ

Novel approaches for COVID-19 diagnosis and treatment: a nonsystematic review

Mehmet Dinçer BİLGİN, Hakan KAYGUSUZ, Şebnem GARİP USTAOĞLU, Feride SEVERCAN

The potential use of Drosophila as an in vivo model organism for COVID-19-related research: a review

Eşref DEMİR

Binary-QSAR guided virtual screening of FDA approved drugs and compounds in clinical investigation against SARS-CoV-2 main protease

Serdar DURDAĞI, Yeşim YUMAK, Lalehan OKTAY, Ece ERDEMOĞLU, İlayda TOLU, Ayşenur ÖZCAN, Elif ACAR, Şehriban BÜYÜKKILIÇ, Alpsu OLKAN

Determination of the interaction between the receptor binding domain of 2019-nCoV spike protein, TMPRSS2, cathepsin B and cathepsin L, and glycosidic and aglycon forms of some flavonols

Erman Salih İSTİFLİ, Bektaş TEPE, Cengiz SARIKÜRKCÜ, Arzuhan ŞIHOĞLU TEPE, Paulo A. NETZ, İbrahim Halil KILIÇ

Genomic chronicle of SARS-CoV-2: a mutational analysis with over 1 million genome sequences

Oğuz ATA, Osman Mutluhan UĞUREL, Dilek TURGUT BALIK

Host variations in SARS-CoV-2 infection

Pelin KILIÇ, Devrim DEMİR DORA, Evrim GÜNEŞ ALTUNTAŞ, Zeynep Yağmur KARAGÜLLEOĞLU, Güldane CENGİZ SEVAL, Hanife Ayşegül MENDİ, Doruk ALTIOK, Elif Zeynep SAVCI, Büşra ÖZKARA, Gizem TUNÇER, Buğrahan Regaip KILINÇ, Evren SUİÇMEZ, Güneysu ÇETİN, Dilruba Beyza UNCUOĞLU, Cansu TEKELİ, Vahdi Umut BENGİ, Si