Myelin disorders and stem cells: as therapies and models

Myelin disorders and stem cells: as therapies and models

Myelin disorders burden millions of people around the world, yet existing therapies are inadequate to cure them. Current remedies commonly treat the symptoms with minimal to no effect on the actual cause of the disorder. The basis and/or the mechanism of demyelination is not known for many of the disorders either. In recent years, stem cells of variable origin have been used in clinical trials as transplant agents to restore the defective biochemical process or the damaged tissue. We summarize the outcomes of these trials for demyelination disorders. The capability of reprograming mature cells into stem cells equips researchers with a new tool to replicate disease phenotypes in cell culture dishes for basic research and therapeutic screens. The applications of in vitro myelination disorder models are also discussed. The combined outcome of the discussed studies offers a promising future as stem cell transplantation generally results in decreased symptoms and improved quality of life. However, the mechanism of action of the interventions is not known and in cases of negative outcomes the reasons are usually obscure. Further basic science studies along with clinical interventions should close the knowledge gap and should help spread the positive results to a larger population.

___

  • Allison DJ, Ditor DS (2015). Immune dysfunction and chronic inflammation following spinal cord injury. Spinal Cord 53: 14- 18.
  • Almad A, Sahinkaya FR, McTigue DM (2011). Oligodendrocyte fate after spinal cord injury. Neurotherapeutics 8: 262-273.
  • Anlar B, Yalaz K (2011). Prognosis in subacute sclerosing panencephalitis. Dev Med Child Neurol 53: 965.
  • Baarine M, Khan M, Singh A, Singh I (2015). Functional characterization of IPSC-derived brain cells as a model for X-linked adrenoleukodystrophy. PLoS One 10: e0143238.
  • Bai L, Hecker J, Kerstetter A, Miller RH (2013). Myelin repair and functional recovery mediated by neural cell transplantation in a mouse model of multiple sclerosis. Neurosci Bull 29: 239-250.
  • Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, Miller RH (2009). Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57: 1192-1203.
  • Barnabe-Heider F, Frisen J (2008). Stem cells for spinal cord repair. Cell Stem Cell 3: 16-24.
  • Bellini WJ, Rota JS, Lowe LE, Katz RS, Dyken PR, Zaki SR, Shieh WJ, Rota PA (2005). Subacute sclerosing panencephalitis: more cases of this fatal disease are prevented by measles immunization than was previously recognized. J Infect Dis 192: 1686-1693.
  • Ben-Hur T (2008). Immunomodulation by neural stem cells. J Neurol Sci 265: 102-104.
  • Bowen JD, Kraft GH, Wundes A, Guan Q, Maravilla KR, Gooley TA, McSweeney PA, Pavletic SZ, Openshaw H, Storb R et al. (2012). Autologous hematopoietic cell transplantation following high-dose immunosuppressive therapy for advanced multiple sclerosis: long-term results. Bone Marrow Transplant 47: 946- 951.
  • Campbell H, Andrews N, Brown KE, Miller E (2007). Review of the effect of measles vaccination on the epidemiology of SSPE. Int J Epidemiol 36: 1334-1348.
  • Cao W, Yang Y, Wang Z, Liu A, Fang L, Wu F, Hong J, Shi Y, Leung S, Dong C et al. (2011). Leukemia inhibitory factor inhibits T helper 17 cell differentiation and confers treatment effects of neural progenitor cell therapy in autoimmune disease. Immunity 35: 273-284.
  • Carbajal KS, Mironova Y, Ulrich-Lewis JT, Kulkarni D, Grifka-Walk HM, Huber AK, Shrager P, Giger RJ, Segal BM (2015). Th cell diversity in experimental autoimmune encephalomyelitis and multiple sclerosis. J Immunol 195: 2552-2559.
  • Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L et al. (2009). Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326: 818-823.
  • Cohen JA (2013). Mesenchymal stem cell transplantation in multiple sclerosis. J Neurol Sci 333: 43-49.
  • Compston A, Coles A (2008). Multiple sclerosis. Lancet 372: 1502- 1517.
  • Connick P, Kolappan M, Patani R, Scott MA, Crawley C, He XL, Richardson K, Barber K, Webber DJ, Wheeler-Kingshott CA et al. (2011). The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials 12: 62.
  • Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011). Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164: 1079- 1106.
  • Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R, Gage FH, Anderson AJ (2005). Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. P Natl Acad Sci USA 102: 14069- 14074.
  • Darlington PJ, Boivin MN, Bar-Or A (2011). Harnessing the therapeutic potential of mesenchymal stem cells in multiple sclerosis. Expert Rev Neurother 11: 1295-1303.
  • Deshmukh VA, Tardif V, Lyssiotis CA, Green CC, Kerman B, Kim HJ, Padmanabhan K, Swoboda JG, Ahmad I, Kondo T et al. (2013). A regenerative approach to the treatment of multiple sclerosis. Nature 502: 327-332.
  • Douvaras P, Wang J, Zimmer M, Hanchuk S, O’Bara MA, Sadiq S, Sim FJ, Goldman J, Fossati V (2014). Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Reports 3: 250-259.
  • Duncan ID, Aguayo AJ, Bunge RP, Wood PM (1981). Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord. J Neurol Sci 49: 241-252.
  • Duncan ID, Hammang JP, Jackson KF, Wood PM, Bunge RP, Langford L (1988). Transplantation of oligodendrocytes and Schwann cells into the spinal cord of the myelin-deficient rat. J Neurocytol 17: 351-360.
  • Duncan ID, Kondo Y, Zhang SC (2011). The myelin mutants as models to study myelin repair in the leukodystrophies. Neurotherapeutics 8: 607-624.
  • Garg RK (2008). Subacute sclerosing panencephalitis. J Neurol 255: 1861-1871.
  • Gow A, Lazzarini RA (1996). A cellular mechanism governing the severity of Pelizaeus-Merzbacher disease. Nat Genet 13: 422- 428.
  • Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C, Schwab MH, Schneider A, Zimmermann F, McCulloch M, Nadon N et al. (1998). Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280: 1610-1613.
  • Gupta N, Henry RG, Strober J, Kang SM, Lim DA, Bucci M, Caverzasi E, Gaetano L, Mandelli ML, Ryan T et al. (2012). Neural stem cell engraftment and myelination in the human brain. Sci Transl Med 4: 155ra137.
  • Gutierrez J, Issacson RS, Koppel BS (2010). Subacute sclerosing panencephalitis: an update. Dev Med Child Neurol 52: 901- 907.
  • Hackett C, Knight J, Mao-Draayer Y (2014). Transplantation of Fasdeficient or wild-type neural stem/progenitor cells (NPCs) is equally efficient in treating experimental autoimmune encephalomyelitis (EAE). Am J Transl Res 6: 119-128.
  • Han M, Lin Z, Zhang Y (2013). The alteration of copper homeostasis in inflammation induced by lipopolysaccharides. Biol Trace Elem Res 154: 268-274.
  • Hartley MD, Altowaijri G, Bourdette D (2014). Remyelination and multiple sclerosis: therapeutic approaches and challenges. Curr Neurol Neurosci Rep 14: 485.
  • Havlicek S, Kohl Z, Mishra HK, Prots I, Eberhardt E, Denguir N, Wend H, Plotz S, Boyer L, Marchetto MC et al. (2014). Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients’ neurons. Hum Mol Genet 23: 2527-2541.
  • Hobson GM, Garbern JY (2012). Pelizaeus-Merzbacher disease, Pelizaeus-Merzbacher-like disease 1, and related hypomyelinating disorders. Semin Neurol 32: 62-67.
  • Jang J, Kang HC, Kim HS, Kim JY, Huh YJ, Kim DS, Yoo JE, Lee JA, Lim B, Lee J et al. (2011). Induced pluripotent stem cell models from X-linked adrenoleukodystrophy patients. Ann Neurol 70: 402-409.
  • Karim SA, Barrie JA, McCulloch MC, Montague P, Edgar JM, Iden DL, Anderson TJ, Nave KA, Griffiths IR, McLaughlin M (2010). PLP/DM20 expression and turnover in a transgenic mouse model of Pelizaeus-Merzbacher disease. Glia 58: 1727- 1738.
  • Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JW, Petrou P, Ben-Hur T, Abramsky O et al. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67: 1187-1194.
  • Kemp K, Mallam E, Scolding N, Wilkins A (2010). Stem cells in genetic myelin disorders. Regen Med 5: 425-439.
  • Kemp S, Pujol A, Waterham HR, van Geel BM, Boehm CD, Raymond GV, Cutting GR, Wanders RJ, Moser HW (2001). ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: role in diagnosis and clinical correlations. Hum Mutat 18: 499-515.
  • Kerman BE, Kim HJ, Padmanabhan K, Mei A, Georges S, Joens MS, Fitzpatrick JA, Jappelli R, Chandross KJ, August P et al. (2015). In vitro myelin formation using embryonic stem cells. Development 142: 2213-2225.
  • Kuskonmaz B, Uckan D, Yalnizoglu D, Gunel M, Karli Oguz K, Konuskan B, Anlar B (2015). Mesenchymal stem cell application in children with subacute sclerosing panencephalitis. Dev Med Child Neurol 57: 880-883.
  • Lebkowski J (2011). GRNOPC1: the world’s first embryonic stem cell-derived therapy. Interview with Jane Lebkowski. Regen Med 6: 11-13.
  • Li N, Leung GK (2015). Oligodendrocyte precursor cells in spinal cord injury: a review and update. Biomed Res Int 2015: 235195.
  • Liao W, Pham V, Liu L, Riazifar M, Pone EJ, Zhang SX, Ma F, Lu M, Walsh CM, Zhao W (2016). Mesenchymal stem cells engineered to express selectin ligands and IL-10 exert enhanced therapeutic efficacy in murine experimental autoimmune encephalomyelitis. Biomaterials 77: 87-97.
  • Mahmood A, Raymond GV, Dubey P, Peters C, Moser HW (2007). Survival analysis of haematopoietic cell transplantation for childhood cerebral X-linked adrenoleukodystrophy: a comparison study. Lancet Neurol 6: 687-692.
  • Marchetto MC, Gage FH (2014). Your brain under the microscope: the promise of stem cells. Cerebrum 2014: 1. Marchetto MC, Winner B, Gage FH (2010). Pluripotent stem cells in neurodegenerative and neurodevelopmental diseases. Hum Mol Genet 19: R71-76.
  • Marchetto MCN, Muotri AR, Mu Y, Smith AM, Cezar GG, Gage FH (2008). Non-cell-autonomous effect of human sod1g37r astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3: 649-657.
  • Miller WP, Rothman SM, Nascene D, Kivisto T, DeFor TE, Ziegler RS, Eisengart J, Leiser K, Raymond G, Lund TC et al. (2011). Outcomes after allogeneic hematopoietic cell transplantation for childhood cerebral adrenoleukodystrophy: the largest single-institution cohort report. Blood 118: 1971-1978.
  • Miron VE, Kuhlmann T, Antel JP (2011). Cells of the oligodendroglial lineage, myelination, and remyelination. Biochim Biophys Acta 1812: 184-193.
  • Mohyeddin Bonab M, Yazdanbakhsh S, Lotfi J, Alimoghaddom K, Talebian F, Hooshmand F, Ghavamzadeh A, Nikbin B (2007). Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 4: 50-57.
  • Nave KA (2010). Myelination and support of axonal integrity by glia. Nature 468: 244-252.
  • Numasawa-Kuroiwa Y, Okada Y, Shibata S, Kishi N, Akamatsu W, Shoji M, Nakanishi A, Oyama M, Osaka H, Inoue K et al. (2014). Involvement of ER stress in dysmyelination of Pelizaeus-Merzbacher disease with PLP1 missense mutations shown by iPSC-derived oligodendrocytes. Stem Cell Reports 2: 648-661.
  • Peru RL, Mandrycky N, Nait-Oumesmar B, Lu QR (2008). Paving the axonal highway: from stem cells to myelin repair. Stem Cell Reviews 4: 304-318.
  • Peters C, Charnas LR, Tan Y, Ziegler RS, Shapiro EG, DeFor T, Grewal SS, Orchard PJ, Abel SL, Goldman AI et al. (2004). Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. Blood 104: 881-888.
  • Potter GB, Rowitch DH, Petryniak MA (2011). Myelin restoration: progress and prospects for human cell replacement therapies. Arch Immunol Ther Exp (Warsz) 59: 179-193.
  • Pountos I, Giannoudis PV (2005). Biology of mesenchymal stem cells. Injury 36 (Suppl. 3): S8-S12.
  • Prasad VK, Mendizabal A, Parikh SH, Szabolcs P, Driscoll TA, Page K, Lakshminarayanan S, Allison J, Wood S, Semmel D et al. (2008). Unrelated donor umbilical cord blood transplantation for inherited metabolic disorders in 159 pediatric patients from a single center: influence of cellular composition of the graft on transplantation outcomes. Blood 112: 2979-2989.
  • Priest CA, Manley NC, Denham J, Wirth ED 3rd, Lebkowski JS (2015). Preclinical safety of human embryonic stem cellderived oligodendrocyte progenitors supporting clinical trials in spinal cord injury. Regen Med 10: 939-958.
  • Ravanidis S, Bogie JF, Donders R, Craeye D, Mays RW, Deans R, Gijbels K, Bronckaers A, Stinissen P, Pinxteren J et al. (2015). Neuroinflammatory signals enhance the immunomodulatory and neuroprotective properties of multipotent adult progenitor cells. Stem Cell Res Ther 6: 176.
  • Readhead C, Schneider A, Griffiths I, Nave KA (1994). Premature arrest of myelin formation in transgenic mice with increased proteolipid protein gene dosage. Neuron 12: 583-595.
  • Ryu CH, Park KY, Hou Y, Jeong CH, Kim SM, Jeun SS (2013). Gene therapy of multiple sclerosis using interferon beta-secreting human bone marrow mesenchymal stem cells. Biomed Res Int 2013: 696738.
  • Saher G, Rudolphi F, Corthals K, Ruhwedel T, Schmidt KF, Lowel S, Dibaj P, Barrette B, Mobius W, Nave KA (2012). Therapy of Pelizaeus-Merzbacher disease in mice by feeding a cholesterolenriched diet. Nat Med 18: 1130-1135.
  • Salewski RP, Mitchell RA, Shen C, Fehlings MG (2015). Transplantation of neural stem cells clonally derived from embryonic stem cells promotes recovery after murine spinal cord injury. Stem Cells Dev 24: 36-50.
  • Schneider-Schaulies J, Meulen V, Schneider-Schaulies S (2003). Measles infection of the central nervous system. J Neurovirol 9: 247-252.
  • Schonberger K, Ludwig MS, Wildner M, Weissbrich B (2013). Epidemiology of subacute sclerosing panencephalitis (SSPE) in Germany from 2003 to 2009: a risk estimation. PLoS One 8: e68909.
  • Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS (2010). Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 28: 152-163.
  • Shin JC, Kim KN, Yoo J, Kim IS, Yun S, Lee H, Jung K, Hwang K, Kim M, Lee IS et al. (2015). Clinical trial of human fetal brainderived neural stem/progenitor cell transplantation in patients with traumatic cervical spinal cord injury. Neural Plast 2015: 630932.
  • Siegel GJ (2006). Basic Neurochemistry: Molecular, Cellular, and Medical Aspects. 7th ed. Amsterdam, the Netherlands: Elsevier. Simons M, Nave KA (2015). Oligodendrocytes: myelination and axonal support. Cold Spring Harb Perspect Biol 8: a020479.
  • Song B, Sun G, Herszfeld D, Sylvain A, Campanale NV, Hirst CE, Caine S, Parkington HC, Tonta MA, Coleman HA et al. (2012). Neural differentiation of patient specific iPS cells as a novel approach to study the pathophysiology of multiple sclerosis. Stem Cell Research 8: 259-273.
  • Sontag CJ, Uchida N, Cummings BJ, Anderson AJ (2014). Injury to the spinal cord niche alters the engraftment dynamics of human neural stem cells. Stem Cell Reports 2: 620-632.
  • Torii T, Miyamoto Y, Yamauchi J, Tanoue A (2014). PelizaeusMerzbacher disease: cellular pathogenesis and pharmacologic therapy. Pediatr Int 56: 659-666.
  • Uchida N, Chen K, Dohse M, Hansen KD, Dean J, Buser JR, Riddle A, Beardsley DJ, Wan Y, Gong X et al. (2012). Human neural stem cells induce functional myelination in mice with severe dysmyelination. Sci Transl Med 4: 155ra136.
  • Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, Maherali N, Studer L, Hochedlinger K, Windrem M et al. (2013). Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12: 252-264.
  • Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, Stanwood N, Rasband M, Roy NS, Nedergaard M, Havton LA et al. (2008). Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2: 553-565.
  • Wishnew J, Page K, Wood S, Galvin L, Provenzale J, Escolar M, Gustafson K, Kurtzberg J (2014). Umbilical cord blood transplantation to treat Pelizaeus-Merzbacher disease in 2 young boys. Pediatrics 134: e1451-1457.
  • Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D, Ceravolo A, Cazzanti F, Frassoni F et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106: 1755- 1761.
  • Zhang J, Li Y, Chen J, Cui Y, Lu M, Elias SB, Mitchell JB, Hammill L, Vanguri P, Chopp M (2005). Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol 195: 16-26.