The heart of the matter: cardiac stem cells

The heart of the matter: cardiac stem cells

Cardiovascular diseases are the primary cause of death in the world. Pharmacological and surgical approaches are the main treatment options for heart disease; however, heart transplantation may be the only option for advanced heart failure patients despite its limited nature. Recent advances enabled stem cell-based therapies to become a promising treatment approach for injured or weakened cardiac tissue. With the identification of resident and heart-specific stem cells in early 2000, new avenues of research have been opened to understand heart development, disease, and regeneration. In this review article, different cardiac stem cell subpopulations are classified and defined based on the expression of various characteristic surface or intracellular proteins, including, but not limited to, C-kit, Sca-1, Isl-1, Nkx2.5, HCN4, SIRPA, Flt-1, and KDR. Understanding cardiac stem cell biology, self-renewal, and differentiation mechanisms holds great promise for directing these processes and utilizing these cells to repair or even build new hearts.

___

  • Akazawa H, Komuro I (2005). Cardiac transcription factor Csx/ Nkx2-5: its role in cardiac development and diseases. Pharmacol Ther 107: 252-268.
  • Albulescu R, Tanase C, Codrici E, Popescu DI, Cretoiu SM, Popescu LM (2015). The secretome of myocardial telocytes modulates the activity of cardiac stem cells. J Cell Mol Med 19: 1783-1794.
  • Alcon A, Cagavi Bozkulak E, Qyang Y (2012). Regenerating functional heart tissue for myocardial repair. Cell Mol Life Sci 69: 2635-2656.
  • Barile L, Gherghiceanu M, Popescu LM, Moccetti T, Vassalli G (2013). Human cardiospheres as a source of multipotent stem and progenitor cells. Stem Cells Int 2013: 916837.
  • Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, El Nakadi B, Banovic M, Beleslin B, Vrolix M et al. (2013). Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 61: 2329-2238.
  • Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, LeCapitaine N et al. (2007). Human cardiac stem cells. P Natl Acad Sci USA 104: 14068-14073.
  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763-776.
  • Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA (2001). Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344: 1750-1757.
  • Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H et al. (2009). Evidence for cardiomyocyte renewal in humans. Science 324: 98-102.
  • Bu L, Jiang X, Martin-Puig S, Caron L, Zhu S, Shao Y, Roberts DJ, Huang PL, Domian IJ, Chien KR (2009). Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460: 113-117.
  • Cagavi E, Bartulos O, Suh CY, Sun B, Yue Z, Jiang Z, Yue L, Qyang Y (2014). Functional cardiomyocytes derived from Isl1 cardiac progenitors via Bmp4 stimulation. PLoS One 9: e110752.
  • Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5: 877-889.
  • Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X et al. (2008). A myocardial lineage derives from Tbx18 epicardial cells. Nature 454: 104-108.
  • Can A, Ulus AT, Cinar O, Topal Celikkan F, Simsek E, Akyol M, Canpolat U, Erturk M, Kara F, Ilhan O (2015). Human Umbilical Cord Mesenchymal Stromal Cell Transplantation in Myocardial Ischemia (HUC-HEART Trial). A study protocol of a phase 1/2, controlled and randomized trial in combination with coronary artery bypass grafting. Stem Cell Rev 11: 752- 760.
  • Cohen ED, Wang Z, Lepore JJ, Lu MM, Taketo MM, Epstein DJ, Morrisey EE (2007). Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling. J Clin Invest 117: 1794-1804.
  • Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, Torella D, Tang XL, Rezazadeh A, Kajstura J et al. (2005). Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. P Natl Acad Sci USA 102: 3766-3771.
  • Den Hartogh SC, Schreurs C, Monshouwer-Kloots JJ, Davis RP, Elliott DA, Mummery CL, Passier R (2015). Dual reporter MESP1 mCherry/w-NKX2-5 eGFP/w-hESCs enable studying early human cardiac differentiation. Stem Cells 33: 56-67.
  • Di Felice V, De Luca A, Colorito ML, Montalbano A, Ardizzone NM, Macaluso F, Gammazza AM, Cappello F, Zummo G (2009). Cardiac stem cell research: an elephant in the room? Anat Rec (Hoboken) 292: 449-454.
  • Durocher D, Charron F, Warren R, Schwartz RJ, Nemer M (1997). The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J 16: 5687-5696.
  • Ellesøe SG, Johansen MM, Bjerre JV, Hjortdal VE, Brunak S, Larsen LA (2015). Familial atrial septal defect and sudden cardiac death: identification of a novel NKX2-5 mutation and a review of the literature. Congenit Heart Dis (in press).
  • Elliott DA, Braam SR, Koutsis K, Ng ES, Jenny R, Lagerqvist EL, Biben C, Hatzistavrou T, Hirst CE, Yu QC et al. (2011). NKX2- 5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nature Methods 8: 1037-1040.
  • Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, Henning BJ, Stirparo GG, Papait R, Scarfò M et al. (2013). Adult c-kitpos cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell 154: 827-842.
  • Fanton Y, Robic B, Rummens JL, Daniëls A, Windmolders S, Willems L, Jamaer L, Dubois J, Bijnens E, Heuts N et al. (2015). Cardiac atrial appendage stem cells engraft and differentiate into cardiomyocytes in vivo: a new tool for cardiac repair after MI. Int J Cardiol 201: 10-19.
  • Freire AG, Nascimento DS, Forte G, Valente M, Resende TP, Pagliari S, Abreu C, Carvalho I, Nardo PD, Pinto-do-Ó P (2014). Stable phenotype and function of immortalized Lin−Sca-1+ cardiac progenitor cells in long-term culture: a step closer to standardization. Stem Cells Dev 23: 1012-1026.
  • George V, Colombo S, Targoff KL (2015). An early requirement for Nkx2.5 ensures the first and second heart field ventricular identity and cardiac function into adulthood. Dev Biol 400: 10-22. Grant AO (2009). Cardiac ion channels. Circ Arrhythm Electrophysiol 2: 185-194.
  • Haraguchi Y, Shimizu T, Matsuura K, Sekine H, Tanaka N, Tadakuma K, Yamato M, Kaneko M, Okano T (2014). Cell sheet technology for cardiac tissue engineering. Methods Mol Biol 1181: 139-155.
  • He JQ, Vu DM, Hunt G, Chugh A, Bhatnagar A, Bolli R (2011). Human cardiac stem cells isolated from atrial appendages stably express c-kit. PLoS One 6: e27719.
  • Henning JR (2011). Stem cells in cardiac repair. Future Cardiol 7: 99- 117.
  • Houlihan DD, Mabuchi Y, Morikawa S, Niibe K, Araki D, Suzuki S, Okano H, Matsuzaki Y (2012). Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-alpha. Nat Protoc 7: 2103-2111.
  • Huyer LD, Montgomery M, Zhao Y, Xiao Y, Conant G, Korolj A, Radisic M (2015). Biomaterial based cardiac tissue engineering and its applications. Biomed Mater 10: 034004.
  • Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142: 375- 386.
  • Jha AK, Tharp KM, Ye J, Santiago-Ortiz JL, Jackson WM, Stahl A, Schaffer DV, Yeghiazarians Y, Healy KE (2015). Enhanced survival and engraftment of transplanted stem cells using growth factor sequestering hydrogels. Biomaterials 47: 1-12.
  • Kabrun N, Buhring HJ, Choi K, Ullrich A, Risau W, Keller G (1997). Flk-1 expression defines a population of early embryonic hematopoietic precursors. Development 124: 2039-2048.
  • Kattman SJ, Huber TL, Keller GM (2006). Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11: 723-732.
  • Kazakov A, Meier T, Werner C, Hall R, Klemmer B, Körbel C, Lammert F, Maack C, Böhm M, Laufs U (2015). C-kit+ resident cardiac stem cells improve left ventricular fibrosis in pressure overload. Stem Cell Res 15: 700-711.
  • Kitajima S, Miyagawa-Tomita S, Inoue T, Kanno J, Saga Y (2006). Mesp1-nonexpressing cells contribute to the ventricular cardiac conduction system. Dev Dyn 235: 395-402.
  • Kitajima S, Takagi A, Inoue T, Saga Y (2000). MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 127: 3215-3226.
  • Kocabas F, Mahmoud AI, Sosic D, Porrello ER, Chen R, Garcia JA, DeBerardinis RJ, Sadek HA (2012). The hypoxic epicardial and subepicardial microenvironment. J Cardiovasc Transl Res 5: 654-665.
  • Kokkinopoulos I, Ishida H, Saba R, Ruchaya P, Cabrera C, Struebig M, Barnes M, Terry A, Kaneko M, Shintani Y et al. (2015). Single-cell expression profiling reveals a dynamic state of cardiac precursor cells in the early mouse embryo. PLoS One 10: e0140831.
  • Koninckx R, Daniëls A, Windmolders S, Mees U, Macianskiene R, Mubagwa K, Steels P, Jamaer L, Dubois J, Robic B et al. (2013). The cardiac atrial appendage stem cell: a new and promising candidate for myocardial repair. Cardiovasc Res 97: 413-423.
  • Kwon C, Qian L, Cheng P, Nigam V, Arnold J, Srivastava D (2009). A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nat Cell Biol 11: 951- 957.
  • Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin LZ, Cai CL, Lu MM, Reth M et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433: 647-653.
  • Leistner DM, Fischer-Rasokat U, Honold J, Seeger FH, Schächinger V, Lehmann R, Martin H, Burck I, Urbich C, Dimmeler S et al. (2011). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCAREAMI): final 5-year results suggest long-term safety and efficacy. Clin Res Cardiol 100: 925-934.
  • Li YY, Lu SS, siXu T, Zhang HQ, Li H (2015). Comparative analysis of telomerase activity in CD117+ CD34+ cardiac telocytes with bone mesenchymal stem cells, cardiac fibroblasts and cardiomyocytes. Chin Med J (Engl) 128: 1942-1947.
  • Lindsley RC, Gill JG, Murphy TL, Langer EM, Cai M, Mashayekhi M, Wang W, Niwa N, Nerbonne JM, Kyba M et al. (2008). Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 3: 55-68.
  • Lui KO, Zangi L, Silva EA, Bu L, Sahara M, Li RA, Mooney DJ, Chien KR (2013). Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA. Cell Research 23: 1172-1186.
  • Malliaras K, Makkar RR, Smith RR, Cheng K, Wu E, Bonow RO, Marbán L, Mendizabal A, Cingolani E, Johnston PV et al. (2014). Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial. J Am Coll Cardiol 63: 110-122.
  • Marfella R, Sasso FC, Cacciapuoti F, Portoghese M, Rizzo MR, Siniscalchi M, Carbonara O, Ferraraccio F, Torella M, Petrella A et al. (2012). Tight glycemic control may increase regenerative potential of myocardium during acute infarction. J Clin Endocrinol Metab 97: 933-942.
  • Martin-Puig S, Wang Z, Chien KR (2008). Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell 2: 320-331.
  • Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, Toko H, Akazawa H, Sato T et al. (2004). Adult cardiac Sca1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279: 11384-11391.
  • Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N, Tachdjian G, Tosca L et al. (2015). Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 36: 2011-2017.
  • Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 5: 911-921.
  • Murphy SV, Atala A (2012). Organ engineering-combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. Bioessays 35: 163-172.
  • Nagai T, Matsuura K, Komuro I (2013). Cardiac side population cells and Sca-1-positive cells. Methods Mol Biol 1036: 63-74.
  • Nsair A, Schenke-Layland K, Van Handel B, Evseenko D, Kahn M, Zhao P, Mendelis J, Heydarkhan S, Awaji O, Vottler M et al. (2012) Characterization and therapeutic potential of induced pluripotent stem cell-derived cardiovascular progenitor cells. PLoS One 7: e45603.
  • Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussian V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ et al. (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. P Natl Acad Sci USA 100: 12313-12318.
  • Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S et al. (1997). Apoptosis in the failing human heart. N Engl J Med 336: 1131-1141.
  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature 410: 701-705.
  • Oskouei BN, Lamirault G, Joseph C, Treuer AV, Landa S, Da Silva J, Hatzistergos K, Dauer M, Balkan W, McNiece I et al. (2012). Increased potency of cardiac stem cells compared with bone marrow mesenchymal stem cells in cardiac repair. Stem Cells Trans Med 1: 116-124.
  • Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008). Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14: 213-221.
  • Oyama T, Nagai T, Wada H, Naito AT, Matsuura K, Iwanaga K, Takahashi T, Goto M, Mikami Y, Yasuda N et al. (2007). Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Bio 176: 329-341.
  • Paffett-Lugassy N, Singh R, Nevis KR, Guner-Ataman B, O’Loughlin E, Jahangiri L, Harvey RP, Burns CG, Burns CE (2013). Heart field origin of great vessel precursors relies on Nkx2.5-mediated vasculogenesis. Nat Cell Bio 15: 1362-1369.
  • Qyang Y, Martin-Puig S, Chiravuri M, Chen S, Xu H, Bu L, Jiang X, Lin L, Granger A, Moretti A et al. (2007). The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/β-catenin pathway. Cell Stem Cell 1: 165-179.
  • Richter M, Kostin S (2015). The failing human heart is characterized by decreased numbers of telocytes as result of apoptosis and altered extracellular matrix composition. J Cell Mol Med 19: 2597-2606.
  • Saga Y, Hata N, Kobayashi S, Magnuson T, Seldin MF, Taketo MM (1996). MesP1: a novel basic helix-loop-helix protein expressed in the nascent mesodermal cells during mouse gastrulation. Development 22: 2769-2778.
  • Sandstedt J, Jonsson M, Dellgren G, Lindahl A, Jeppsson A, Asp J (2014). Human C-kit+CD45- cardiac stem cells are heterogeneous and display both cardiac and endothelial commitment by single-cell qPCR analysis. Biochem Biophys Res Commun 443: 234-238.
  • Segers VFM, Lee RT (2008). Stem-cell therapy for cardiac disease. Nature 451: 21.
  • Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marbán E (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115: 896-908.
  • Später D, Abramczuk MK, Buac K, Zangi L, Stachel MW, Clarke J, Sahara M, Ludwig A, Chien KR (2013). A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells. Nat Cell Biol 15: 1098-1106.
  • Stennard FA, Costa MW, Elliott DA, Rankin S, Haast SJ, Lai D, McDonald LP, Niederreither K, Dolle P, Bruneau BG et al. (2003). Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Dev Biol 262: 206-224.
  • Sullivan KE, Burns LJ, Black LD (2015). An in vitro model for the assessment of stem cell fate following implantation within the infarct microenvironment identifies ISL-1 expression as the strongest predictor of C-Kit(+) cardiac progenitor cells’ therapeutic potential. J Mol Cell Cardiol 88: 91-100.
  • Sultana N, Zhang L, Yan J, Chen J, Cai W, Razzaque S, Jeong D, Sheng W, Bu L, Xu M et al. (2015). Resident c-kit + cells in the heart are not cardiac stem cells. Nature Communications 6: 8701
  • Takeichi M, Nimura K, Mori M, Nakagami H, Kaneda Y (2013). The transcription factors Tbx18 and Wt1 control the epicardial epithelial-mesenchymal transition through bi-directional regulation of Slug in murine primary epicardial cells. PLoS One 8: e57829.
  • Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S (1999). The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126: 1269-1280.
  • Turbay D, Wechsler SB, Blanchard KM, Izumo S (1996). Molecular cloning, chromosomal mapping, and characterization of the human cardiac-specific homeobox gene hCsx. Mol Med 2: 86-96.
  • Vajravelu BN, Hong KU, Al-Maqtari T, Cao P, Keith MC, Wysoczynski M, Zhao J, Moore JB, Bolli R (2015). C-kit promotes growth and migration of human cardiac progenitor cells via the PI3K-AKT and MEK-ERK pathways. PLoS One 10: e0140798.
  • Valente M, Nascimento DS, Cumano A, Pinto-do-Ó P (2014). Sca-1+ cardiac progenitor cells and heart-making: a critical synopsis. Stem Cells Dev 23: 2263-2273.
  • Valiente-Alandi I, Albo-Castellanos C, Herrero D, Arza E, GarciaGomez M, Segovia JC, Capecchi M, Bernad A (2015). Cardiac Bmi1+ cells contribute to myocardial renewal in the murine adult heart. Stem Cell Res Ther 6: 205.
  • Van de Rijn M, Heimfeld S, Spangrude GJ, Weissman IL (1989). Mouse hematopoietic stem-cell antigen Sca-1 is a member of the Ly-6 antigen family. P Natl Acad Sci USA 8: 4634-4638.
  • Wang H, Chen H, Feng B, Wang X, He X, Hu R, Yin M, Wang W, Fu W, Xu Z (2014). Isolation and characterization of a Sca-1+/CD31- progenitor cell lineage derived from mouse heart tissue. BMC Biotechnol 14: 75.
  • Wang X, Hu Q, Nakamura Y, Lee J, Zhang G, From AH, Zhang J (2006). The role of the sca-1+/CD31- cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells. 24: 1779-1788.
  • Wang X, Li Q, Hu Q, Suntharalingam P, From AHL, Zhang J (2014) Intra-myocardial injection of both growth factors and heart derived Sca-1+/CD31− cells attenuates post-MI LV remodeling more than does cell transplantation alone: neither intervention enhances functionally significant cardiomyocyte regeneration. PLoS One 9: e95247.
  • Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, Morales AR, Da Silva J, Sussman MA, Heldman AW et al. (2013). Enhanced effect of combining human cardiac stem cells and BM-MSC cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127: 213-223.
  • Yacoub MH, Terrovitis J (2013). CADUCEUS, SCIPIO, ALCADIA: cell therapy trials using cardiac-derived cells for patients with post myocardial infarction LV dysfunction, still evolving. Global Cardiol Sci Pract 1: 5-8.
  • Yamashita JK, Takano M, Hiraoka-Kanie M, Shimazu C, Peishi Y, Yanagi K, Nakano A, Inoue E, Kita F, Nishikawa S (2005). Prospective identification of cardiac progenitors by a novel single cell-based cardiomyocyte induction. FASEB J 19: 1534- 1536.
  • Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM et al. (2008). Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453: 524-528.
  • Zeng B, Ren X, Cao F, Zhou X, Zhang J (2011). Developmental patterns and characteristics of epicardial cell markers Tbx18 and Wt1 in murine embryonic heart. J Biomed Sci 18: 67.
  • Zhang L, Nomura-Kitabayashi A, Sultana N, Cai W, Cai X, Moon AM, Cai CL (2014). Mesodermal Nkx2.5 is necessary and sufficient for early second heart field development. Dev Biol 390: 68-79.
  • Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR et al. (2008). Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454: 109-113.
  • Zhou Q, Wei L, Zhong C, Fu S, Bei Y, Huică RI, Wang F, Xiao J (2015). Cardiac telocytes are double positive for CD34/PDGFR-α. J Cell Mol Med 19: 2036-2042.