Induced pluripotent stem cells: methods, disease modeling, and microenvironment for drug discovery and screening

Induced pluripotent stem cells: methods, disease modeling, and microenvironment for drug discovery and screening

The raging ethical, religious, moral, political, and safety issues pertaining to the use of embryonic stem cells for therapy and research have prompted researchers to develop possibly better alternatives that are more efficacious and serve multiple purposes. Induced pluripotent stem cells (iPSCs) developed by multiple methods provide an unparalleled source of cells that could be differentiated into progeny cells. In cell-based disease models the progeny cells mimic, at least in part, the pathology of the studied disease and are used to improve the mechanistic understanding of the pathology. Furthermore, these cells could be used to test the efficacy and safety of drugs that can reverse this phenotype. This review provides an overview of the aforesaid methods for iPSC generation and the development of certain disease-based model systems. In this review, the focus is on model systems for neurological and hematological diseases. Last but not least, the importance of the microenvironment is underscored and the significance of these model systems is discussed in the context of drug screening and development.

___

  • Alamein MA, Wolvetang EJ, Ovchinnikov DA, Stephens S, Sanders K, Warnke PH (2015). Polymeric nanofibrous substrates stimulate pluripotent stem cells to form three-dimensional multilayered patty-like spheroids in feeder-free culture and maintain their pluripotency. J Tissue Eng Regen M 9: 1078- 1083.
  • Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA et al. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8: 376-388.
  • Badger JL, Cordero-Llana O, Hartfield EM, Wade-Martins R (2014). Parkinson’s disease in a dish using stem cells as a molecular tool. Neuropharmacology 76: 88-96.
  • Bilican B, Serio A, Barmada SJ, Nishimura AL, Sullivan GJ, Carrasco M, Phatnani HP, Puddifoot CA, Story D, Fletcher J et al. (2012). Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. P Natl Acad Sci USA 109: 5803-5808.
  • Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D et al. (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature 473: 221-225.
  • Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, Rothstein JD, Borchelt DR, Price DL et al. (1997). ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18: 327-338.
  • Burkhardt MF, Martinez FJ, Wright S, Ramos C, Volfson D, Mason M, Garnes J, Dang V, Lievers J, Shoukat-Mumtaz U et al. (2013). A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 56: 355-364.
  • Byers B, Lee HL, Reijo Pera R (2012). Modeling Parkinson’s disease using induced pluripotent stem cells. Curr Neurol Neurosci 12: 237-242.
  • Byrne JA, Nguyen HN, Reijo Pera RA (2009). Enhanced generation of induced pluripotent stem cells from a subpopulation of human fibroblasts. PLoS One 4: e7118.
  • Campos PB, Paulsen BS, Rehen SK (2014). Accelerating neuronal aging in in vitro model brain disorders: a focus on reactive oxygen species. Front Aging Neurosci 6: 292.
  • Chang CW, Lai YS, Pawlik KM, Liu K, Sun CW, Li C, Schoeb TR, Townes TM (2009). Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 27: 1042-1049.
  • Cherry JJ, Kobayashi DT, Lynes MM, Naryshkin NN, Tiziano FD, Zaworski PG, Rubin LL, Jarecki J (2014). Assays for the identification and prioritization of drug candidates for spinal muscular atrophy. Assay Drug Dev Techn 12: 315-341.
  • Chun YW, Balikov DA, Feaster TK, Williams CH, Sheng CC, Lee JB, Boire TC, Neely MD, Bellan LM, Ess KC et al. (2015). Combinatorial polymer matrices enhance in vitro maturation of human induced pluripotent cell cell-derived cardiomyocytes. Biomaterials 67: 52-64.
  • Dai Y, Qin J, Zhang X, Zhang X, Chen C, Liao K (2013). Effect of electrical stimulation on the differentiation of induced pluripotent stem cells into cardiomyocytes induced by vitamin C in vitro. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 29: 364-367 (article in Chinese with an abstract in English).
  • Davidson MD, Ware BR, Khetani SR (2015). Stem cell-derived liver cells for drug testing and disease modeling. Discov Med 19: 349-358.
  • Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321: 1218-1221.
  • Dong A, Rivella S, Breda L (2013). Gene therapy for hemoglobinopathies: progress and challenges. Transl Res 161: 293-306.
  • Effenberg A, Stanslowsky N, Klein A, Wesemann M, Haase A, Martin U, Dengler R, Grothe C, Ratzka A, Wegner F (2015). Striatal transplantation of human dopaminergic neurons differentiated from induced pluripotent stem cells derived from umbilical cord blood using lentiviral reprogramming. Cell Transplant 24: 2099-2112.
  • Egawa N, Kitaoka S, Tsukita K, Naitoh M, Takahashi K, Yamamoto T, Adachi F, Kondo T, Okita K, Asaka I et al. (2012). Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4: 145ra104.
  • Finotti A, Breda L, Lederer CW, Bianchi N, Zuccato C, Kleanthous M, Rivella S, Gambari R (2015). Recent trends in the gene therapy of β-thalassemia. J Blood Med 6: 69-85.
  • Focosi D, Amabile G, Di Ruscio A, Quaranta P, Tenen DG, Pistello M (2014). Induced pluripotent stem cells in hematology: current and future applications. Blood Cancer J 4: e211.
  • Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. P Jpn Acad B-Phys 85: 348-362.
  • Gu M, Nguyen PK, Lee AS, Xu D, Hu S, Plews JR, Han L, Huber BC, Lee WH, Gong Y et al. (2012). Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circ Res 111: 882-893.
  • Gurdon JB, Elsdale TR, Fischberg M (1958). Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182: 64-65.
  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264: 1772-1775.
  • Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, Erickson J, Kulik J, DeVito L, Psaltis G et al. (2002). Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). P Natl Acad Sci USA 99: 1604-1609.
  • Hribar KC, Finlay D, Ma X, Qu X, Ondeck MG, Chung PH, Zanella F, Engler AJ, Sheikh F, Vuori K et al. (2015). Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture. Lab Chip 15: 2412-2418.
  • Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26: 1269-1275.
  • Jazwa A, Florczyk U, Jozkowicz A, Dulak J (2013). Gene therapy on demand: site specific regulation of gene therapy. Gene 525: 229-238.
  • Julien JP, Kriz J (2006). Transgenic mouse models of amyotrophic lateral sclerosis. Biochim Biophys Acta 1762: 1013-1024.
  • Kelley JM, Tulpule A, Daley GQ (2013). Proteolytic autodigestion: common tissue pathology in Shwachman-Diamond syndrome? Cell Cycle 12: 3457-3458.
  • Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4: 472-476.
  • Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K (2013). Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12: 487-496.
  • Krassowska A, Gordon-Keylock S, Samuel K, Gilchrist D, Dzierzak E, Oostendorp R, Forrester LM, Ansell JD (2006). Promotion of haematopoietic activity in embryonic stem cells by the aorta-gonad-mesonephros microenvironment. Exp Cell Res 312: 3595-3603.
  • Krishnan SP (2015). Mechanisms of pluripotency and epigenetic reprogramming in primordial germ cells: lessons for the conversion of other cell types into the stem cell lineage. Turk J Biol 39: 187-193.
  • Krishnan SP (2015). A letter in response to “Cancer stem cells: emerging actors in both basic and clinical cancer research”. Cancer stem cells (CSCs): targets and strategies for intervention. Turk J Biol 39: 517-521.
  • Kumar P, Woon-Khiong C (2011). Optimization of lentiviral vectors generation for biomedical and clinical research purposes: contemporary trends in technology development and applications. Curr Gene Ther 11: 144-153.
  • Lim JM, Gong SP (2013). Somatic cell transformation into stem cell-like cells induced by different microenvironments. Organogenesis 9: 245-248.
  • Liu GH, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, Gu Y, Yi F, Xu X, Zhang W et al. (2014). Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patientderived iPSCs. Nat Commun 5: 4330-4365.
  • Lopez-Leon M, Reggiani PC, Herenu CB, Goya RG (2014). Regenerative medicine for the aging brain. Enliven J Stem Cell Res Regen Med 1: 1-9.
  • Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K (2008). Generation of human induced pluripotent stem cells from dermal fibroblasts. P Natl Acad Sci USA 105: 2883-2888.
  • Ma N, Liao B, Zhang H, Wang L, Shan Y, Xue Y, Huang K, Chen S, Zhou X, Chen Y (2013). Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integrationfree β-thalassemia induced pluripotent stem cells. J Biol Chem 288: 34671-34679.
  • Ma N, Shan Y, Liao B, Kong G, Wang C, Huang K, Zhang H, Cai X, Chen S, Pei D (2015). Factor-induced reprogramming and zinc finger nuclease-aided gene targeting cause different genome instability in β-thalassemia induced pluripotent stem cells (iPSCs). J Biol Chem 290: 12079-12089.
  • Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger KA (2008). A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3: 340-345.
  • Majkut S, Idema T, Swift J, Krieger C, Liu A, Discher DE (2013). Heart-specific stiffening in early embryos parallels matrix and myosin expression to optimize beating. Curr Biol 23: 2434- 2439.
  • Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F et al. (2011). Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8: 633-638.
  • Müller LU, Milsom MD, Harris CE, Vyas R, Brumme KM, Parmar K, Moreau LA, Schambach A, Park IH, London WB et al. (2012). Overcoming reprogramming resistance of Fanconi anemia cells. Blood 119: 5449-5457.
  • Navarro S, Moleiro V, Molina-Estevez FJ, Lozano ML, Chinchon R, Almarza E, Quintana-Bustamante O, Mostoslavsky G, Maetzig T, Galla M et al. (2014)
  • Generation of iPSCs from genetically corrected Brca2 hypomorphic cells: implications in cell reprogramming and stem cell therapy. Stem Cells 32: 436-446.
  • Nicaise C, Mitrecic D, Falnikar A, Lepore AC (2015). Transplantation of stem cell-derived astrocytes for the treatment of amyotrophic lateral sclerosis and spinal cord injury. World J Stem Cells 7: 380-398.
  • Nishi M, Akutsu H, Kudoh A, Kimura H, Yamamoto N, Umezawa A, Lee SW, Ryo A (2014).Induced cancer stem-like cells as a model for biological screening and discovery of agents targeting phenotypic traits of cancer stem cell. Oncotarget 5: 8665-8680.
  • Oback B, Wells DN (2007). Donor cell differentiation, reprogramming, and cloning efficiency: elusive or illusive correlation? Mol Reprod Dev 74: 646-654.
  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science 322: 949-953.
  • Pan S, Chen W, Liu X, Xiao J, Wang Y, Liu J, Du Y, Wang Y, Zhang Y (2015). Application of a novel population of multipotent stem cells derived from skin fibroblasts as donor cells in bovine SCNT. PLoS One 10: e0114423.
  • Paulsen Bda S, de Moraes Maciel R, Galina A, Souza da Silveira M, dos Santos Souza C, Drummond H, Nascimento Pozzatto E, Silva H Jr, Chicaybam L, Massuda R et al. (2012). Altered oxygen metabolism associated to neurogenesis of induced Pluripotent stem cells derived from a schizophrenic patient. Cell Transplant 21: 1547-1559.
  • Pomeshchik Y, Puttonen KA, Kidin I, Ruponen M, Lehtonen S, Malm T, Akesson E, Hovatta O, Koistinaho J (2015). Transplanted human induced pluripotent stem cell-derived neural progenitor cells do not promote functional recovery of pharmacologically immunosuppressed mice with contusion spinal cord injury. Cell Transplant 24: 1799-1812.
  • Raya A, Rodríguez-Pizà I, Navarro S, Richaud-Patin Y, Guenechea G, Sánchez-Danés A, Consiglio A, Bueren J, Izpisúa Belmonte JC (2010). A protocol describing the genetic correction of somatic human cells and subsequent generation of iPS cells. Nat Protoc 5: 647-660.
  • Richard JP, Maragakis NJ (2015). Induced pluripotent stem cells from ALS patients for disease modeling. Brain Res 1607: 15-25.
  • Rio P, Baños R, Lombardo A, Quintana-Bustamante O, Alvarez L, Garate Z, Genovese P, Almarza E, Valeri A, Díez B et al. (2014). Targeted gene therapy and cell reprogramming in Fanconi anemia. EMBO Mol Med 6: 835-848.
  • Robinton DA, Daley GQ (2012). The promise of induced pluripotent stem cells in research and therapy. Nature 481: 295-305.
  • Rönndahl G, Mönkemeyer S, Schulze S, Pekrun A, Eikel D, Nau H, Witt O (2006). Novel valproic acid derivatives with hemoglobin F inducing activity. Am J Hematol 81: 374-376.
  • Sanders LH, Laganière J, Cooper O, Mak SK, Vu BJ, Huang YA, Paschon DE, Vangipuram M, Sundararajan R, Urnov FD et al. (2014). LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: reversal by gene correction. Neurobiol Dis 62: 381-386.
  • Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, Goodwin MJ, Hawkins JS, Ramirez CL, Batista LF et al. (2011). In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29: 1717-1726.
  • Singh VK, Kalsan M, Kumar N, Saini A, Chandra R (2015). Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 3: 2.
  • Si-Tayeb K, Noto FK, Sepac A, Sedlic F, Bosnjak ZJ, Lough JW, Duncan SA (2010). Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Dev Biol 10: 81.
  • Somers A, Jean JC, Sommer CA, Omari A, Ford CC, Mills JA, Ying L, Sommer AG, Jean JM, Smith BW et al. (2010). Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28: 1728-1740.
  • Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G (2009). Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27: 543-549.
  • Song B, Fan Y, He W, Zhu D, Niu X, Wang D, Ou Z, Luo M, Sun X (2015). Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev 24: 1053-1065.
  • Stadtfeld M, Brennand K, Hochedlinger K (2008). Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 18: 890-894.
  • Stadtfeld M, Maherali N, Breault DT, Hochedlinger K (2008). Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2: 230-240.
  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008). Induced pluripotent stem cells generated without viral integration. Science 322: 945-949.
  • Subba Rao M, Sasikala M, Nageshwar Reddy D (2013). Thinking outside the liver: induced pluripotent stem cells for hepatic applications. World J Gastroentero 19: 3385-3396.
  • Suzuki NM, Niwa A, Yabe M, Hira A, Okada C, Amano N, Watanabe A, Watanabe K, Heike T, Takata M et al. (2015). Pluripotent cell models of fanconi anemia identify the early pathological defect in human hemoangiogenic progenitors. Stem Cells Transl Med 4: 333-338.
  • Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11: 1553-1558.
  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861-872.
  • Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676.
  • Tubsuwan A, Abed S, Deichmann A, Kardel MD, Bartholomä C, Cheung A, Negre O, Kadri Z, Fucharoen S, von Kalle C et al. (2013). Parallel assessment of globin lentiviral transfer in induced pluripotent stem cells and adult hematopoietic stem cells derived from the same transplanted β-thalassemia patient. Stem Cells 31: 1785-1794.
  • Tulpule A, Kelley JM, Lensch MW, McPherson J, Park IH, Hartung O, Nakamura T, Schlaeger TM, Shimamura A, Daley GQ (2013). Pluripotent stem cell models of Shwachman-Diamond syndrome reveal a common mechanism for pancreatic and hematopoietic dysfunction. Cell Stem Cell 12: 727-736.
  • Varela I, Karagiannidou A, Oikonomakis V, Tzetis M, Tzanoudaki M, Siapati EK, Vassilopoulos G, Graphakos S, Kanavakis E, Goussetis E (2014). Generation of human β-thalassemia induced pluripotent cell lines by reprogramming of bone marrow-derived mesenchymal stromal cells using modified mRNA. Cell Reprogram 16: 447-455.
  • Vega SL, Liu E, Patel PJ, Kulesa AB, Carlson AL, Ma Y, Becker ML, Moghe PV (2012). High content imaging-based screening of microenvironment-induced changes to stem cells. J Biomol Screen 17: 1151-1162.
  • Wainger BJ, Kiskinis E, Mellin C, Wiskow O, Han SS, Sandoe J, Perez NP, Williams LA, Lee S, Boulting G et al. (2014). Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep 7: 1-11.
  • Wang Y, Zheng CG, Jiang Y, Zhang J, Chen J, Yao C, Zhao Q, Liu S, Chen K, Du J, Yang Z, Gao S (2012). Genetic correction of β-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice. Cell Res 22: 637-648.
  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7: 618-630.
  • Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M et al. (2009). PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458: 766-770.
  • Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995). An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14:1105-1116.
  • Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, Kan YW (2014). Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res 24: 1526-1533.
  • Xu P, Tong Y, Liu XZ, Wang TT, Cheng L, Wang BY, Lv X, Huang Y, Liu DP (2015). Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C>T) mutation in β-thalassemia-derived iPSCs. Sci Rep 5: 12065
  • Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N (2011). Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20: 4530-4539.
  • Yamada R, Hattori K, Tachikawa S, Tagaya M, Sasaki T, Sugiura S, Kanamori T, Ohnuma K (2014). Control of adhesion of human induced pluripotent stem cells to plasma-patterned polydimethylsiloxane coated with vitronectin and γ-globulin. J Biosci Bioeng 118: 315-322.
  • Yang YM, Gupta SK, Kim KJ, Powers BE, Cerqueira A, Wainger BJ, Ngo HD, Rosowski KA, Schein PA, Ackeifi CA et al. (2013). A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell 12: 713-726.
  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917-1920.
  • Yung SK, Tilgner K, Ledran MH, Habibollah S, Neganova I, Singhapol C, Saretzki G, Stojkovic M, Armstrong L, Przyborski S et al. (2013). Brief report: human pluripotent stem cell models of fanconi anemia deficiency reveal an important role for fanconi anemia proteins in cellular reprogramming and survival of hematopoietic progenitors. Stem Cells 31: 1022-1029.
  • Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C, Mutalif RA, Navasankari R, Zhang Y, Tse HF et al. (2011). A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8: 31-45.
  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4: 381-384.
  • Zhou W, Freed CR (2009). Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27: 2667-2674.
  • Zou J, Mali P, Huang X, Dowey SN, Cheng L (2011). Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 118: 4599- 4608.