Limbal stem cell deficiency: special focus on tracking limbal stem cells

Limbal stem cell deficiency: special focus on tracking limbal stem cells

The cornea, the transparent part of the eye that helps in the formation of images, has multiple layers. Among them, the superficial epithelial layer is protected and maintained homeostatically by the limbus, located in the periphery of the cornea. Limbal stem cells are located at the basal layer of the limbus and the loss of these cells is called limbal stem cell deficiency (LSCD). LSCD is characterized by corneal vascularization, inflammation, and conjunctivalization, which ultimately lead to blindness. Several clinical transplantation procedures used for the treatment of LSCD are cultivated limbal epithelial transplantation, simple limbal epithelial transplantation, and cultured oral mucosal epithelial transplantation. Long term follow-up of these mentioned transplantations across the globe shows that the success rate declines as the follow-up period increases. There is an urgent need to know the mechanism of stem cell transplantation in curing LSCD to improve the success rate of the transplantations. There are numerous reports on other stem cell transplantation procedures and its mechanism in healing the disease or deficiency. In the case of LSCD a lot of labeling and tracking methods are used, but there are no confined reports on the mechanisms of the stem cell transplantation and its success. This review summarizes the current treatments available for LSCD, substrates used during limbal stem cell culture and transplantation, and findings from posttransplant cell tracking experiments conducted up to date.

___

  • Adinolfi M, Akle CA, McColl I, Fensom AH, Tansley L, Connolly P, Hsi BL, Faulk WP, Travers P, Bodmer WF (1982). Expression of HLA antigens, b2-microglobulin and enzymes by human amniotic membrane. Nature 295: 325-327.
  • Ahmad S, Osei‐Bempong C, Dana R, Jurkunas U (2010). The culture and transplantation of human limbal stem cells. J Cell Physiol 225: 15-19.
  • Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I (1981). Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 2: 1003-1005.
  • Ang LP, Tanioka H, Kawasaki S, Ang LP, Yamasaki K, Do TP, Thein ZM, Koizumi N, Nakamura T, Yokoi N (2010). Cultivated human conjunctival epithelial transplantation for total limbal stem cell deficiency. Invest Ophth Vis Sci 51: 758-764.
  • Bartlett JD, Jaanus SD (2008). Clinical Ocular Pharmacology. 5thed. St. Louis, MO, USA: Butterworth Heinemann Elsevier.
  • Bessou-Touya S, Picardo M, Maresca V, Surleve-Bazeille JE, Pain C, Taïeb A (1998). Chimeric human epidermal reconstructs to study the role of melanocytes and keratinocytes in pigmentation and photoprotection. J Invest Dermatol 111: 1103-1108.
  • Buschke W, Friedenwald JS, Fleischmann W (1943). Studies on the mitotic activity of the corneal epithelium; methods; the effects of colchicine, ether, cocaine and ephedrine. Bull Johns Hopkins Hosp 73: 143-167.
  • Chirila TV, Barnard Z, Harkin DG, Schwab IR, Hirst LW (2008). Bombyx mori silk fibroin membranes as potential substrata for epithelial constructs used in the management of ocular surface disorders. Tissue Eng Pt A 14: 1203-1211.
  • Curcio C, Lanzini M, Calienno R, Mastropasqua R, Marchini G (2015). The expression of LGR5 in healthy human stem cell niches and its modulation in inflamed conditions. Mol Vis 21: 644-648.
  • Davanger M, Evensen A (1971). Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 229: 560- 561.
  • Daya SM, Watson A, Sharpe JR, Giledi Z, Rowe A, Martin R, James SE (2005). Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology 112: 470-477.
  • Di Girolamo N (2015). Moving epithelia: tracking the fate of mammalian limbal epithelial stem cells. Prog Retin Res 48: 203-225.
  • Di Girolamo N, Bosch M, Zamora K, Coroneo MT, Wakefield D, Watson SL (2009). A contact lens-based technique for expansion and transplantation of autologous epithelial progenitors for ocular surface reconstruction. Transplantation 87: 1571-1578.
  • Dravida S, Gaddipati S, Griffith M, Merrett K, Lakshmi Madhira S, Sangwan VS, Vemuganti GK (2008). A biomimetic scaffold for culturing limbal stem cells: a promising alternative for clinical transplantation. J Tissue Eng Regen M 2: 263-271.
  • Dziasko MA, Tuft SJ, Daniels JT (2015). Limbal melanocytes support limbal epithelial stem cells in 2D and 3D microenvironments. Exp Eye Res 138: 70-79.
  • Echevarria TJ, Di Girolamo N (2011). Tissue-regenerating, visionrestoring corneal epithelial stem cells. Stem Cell Rev Rep 7: 256-268.
  • Eslani M, Baradaran-Rafii A, Ahmad S (2012). Cultivated limbal and oral mucosal epithelial transplantation. Seminars in Ophthalmology 27: 80-94.
  • Espana E, Ti S, Grueterich M, Touhami A, Tseng S (2003). Corneal stromal changes following reconstruction by ex vivo expanded limbal epithelial cells in rabbits with total limbal stem cell deficiency. Brit J Ophthalmol 87: 1509-1514.
  • Gage PJ, Rhoades W, Prucka SK, Hjalt T (2005). Fate maps of neural crest and mesoderm in the mammalian eye. Invest Ophth Vis Sci 46: 4200.
  • Genicio N, Paramo JG, Shortt AJ (2015). Quantum dot labeling and tracking of cultured limbal epithelial cell transplants in vitro tracking of transplanted limbal epithelial cells. Invest Ophth Vis Sci 56: 3051-3059.
  • Goldberg MF, Bron A (1982). Limbal palisades of Vogt. T Am Ophthal Soc 80: 155.
  • Gomes JAP, Monteiro BG, Melo GB, Smith RL, da Silva MCP, Lizier NF, Kerkis A, Cerruti H, Kerkis I (2010). Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophth Vis Sci 51: 1408-1414.
  • Haddad A, Faria-e-Sousa S (2014). Maintenance of the corneal epithelium is carried out by germinative cells of its basal stratum and not by presumed stem cells of the limbus. Braz J Med Biol Res 47: 470-477.
  • Hanna C, O’Brien JE (1960). Cell production and migration in the epithelial layer of the cornea. AMA Arch Ophthalmol 64: 536- 539.
  • Hayashi R, Yamato M, Sugiyama H, Sumide T, Yang J, Okano T, Tano Y, Nishida K (2007). N‐cadherin is expressed by putative stem/progenitor cells and melanocytes in the human limbal epithelial stem cell niche. Stem Cells 25: 289-296.
  • Henderson TR, Findlay I, Matthews PL, Noble BA (2001a). Identifying the origin of single corneal cells by DNA fingerprinting: part I–implications for corneal limbal allografting. Cornea 20: 400- 403.
  • Henderson TR, Findlay I, Matthews PL, Noble BA (2001b). Identifying the origin of single corneal cells by DNA fingerprinting: part II–application to limbal allografting. Cornea 20: 404-407.
  • Homma R, Yoshikawa H, Takeno M, Kurokawa MS, Masuda C, Takada E, Tsubota K, Ueno S, Suzuki N (2004). Induction of epithelial progenitors in vitro from mouse embryonic stem cells and application for reconstruction of damaged cornea in mice. Invest Ophth Vis Sci 45: 4320-4326.
  • Hong J, Zheng T, Xu J, Deng SX, Chen L, Sun X, Le Q, Li Y (2011). Assessment of limbus and central cornea in patients with keratolimbal allograft transplantation using in vivo laser scanning confocal microscopy: an observational study. Graef Arch Clin Exp 249: 701-708.
  • Houlihan JM, Biro PA, Harper HM, Jenkinson HJ, Holmes CH (1995). The human amniotic membrane is a site of MHC class 1b expression: evidence for the expression of HLA-E and HLA-G. J Immunol 154: 565-574.
  • Huang DM, Hung Y, Ko BS, Hsu SC, Chen WH, Chien CL, Tsai CP, Kuo CT, Kang JC, Yang CS (2005). Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB J 19: 2014- 2016.
  • Huang NF, Okogbaa J, Babakhanyan A, Cooke JP (2012). Bioluminescence imaging of stem cell-based therapeutics for vascular regeneration. Theranostics 2: 346-354.
  • Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S (2000).Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20: 173- 177.
  • Kolli S, Ahmad S, Lako M, Figueiredo F (2010). Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. Stem Cells 28: 597-610.
  • Ksander BR, Kolovou PE, Wilson BJ, Saab KR, Guo Q, Ma J, McGuire SP, Gregory MS, Vincent WJ, Perez VL (2014). ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature 511: 353-357.
  • Lawrence BD, Cronin-Golomb M, Georgakoudi I, Kaplan DL, Omenetto FG (2008). Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 9: 1214-1220.
  • Lehrer MS, Sun TT, Lavker RM (1998). Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J Cell Sci 111: 2867-2875.
  • Li GG, Chen SY, Xie HT, Zhu YT, Tseng SC (2012). Angiogenesis potential of human limbal stromal niche cells. Invest Ophth Vis Sci 53: 3357-3367.
  • Li, GG, Zhu YT, Xie HT, Chen SY, Tseng SC (2012). Mesenchymal stem cells derived from human limbal niche cells. Invest Ophth Vis Sci 53: 5686-5697.
  • Li W, Hayashida Y, Chen YT, Tseng SC (2007). Niche regulation of corneal epithelial stem cells at the limbus. Cell Res 17: 26-36.
  • Ljubimov AV, Burgeson RE, Butkowski RJ, Michael AF, Sun TT, Kenney MC (1995). Human corneal basement membrane heterogeneity: topographical differences in the expression of type IV collagen and laminin isoforms. Lab Invest 72: 461-473.
  • Lu RY, Qu J, Ge L, Zhang Z, Su S, Pflugfelder C, Li DQ (2012). Transcription factor TCF4 maintains the properties of human corneal epithelial stem cells. Stem Cells 30: 753-761.
  • Majo F, Rochat A, Nicolas M, Jaoudé GA, Barrandon Y (2008). Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature 456: 250-254.
  • Malak TM, Ockleford CD, Bell SC, Dalgleish R, Bright N, Macvicar J (1993). Confocal immunofluorescence localization of collagen types I, III, IV, V and VI and their ultrastructural organization in term human fetal membranes. Placenta 14: 385-406.
  • Mann I. (1944). A study of epithelial regeneration in the living eye. Brit J Ophthalmol 28: 26-40.
  • Mariappan I, Kacham S, Purushotham J, Maddileti S, Siamwala J, Sangwan VS (2014). Spatial distribution of niche and stem cells in ex vivo human limbal cultures. Stem Cells Transl Med 3: 1-11.
  • Meyer‐Blazejewska EA, Call MK, Yamanaka O, Liu H, Schlötzer‐ Schrehardt U, Kruse FE, Kao WW (2011). From hair to cornea: toward the therapeutic use of hair follicle‐derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells 29: 57-66.
  • Nakamura T, Inatomi T, Sotozono C, Amemiya T, Kanamura N, Kinoshita S (2004). Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. Brit J Ophthalmology 88: 1280-1284.
  • Niederer RL, Perumal D, Sherwin T, McGhee CN (2007). Corneal innervation and cellular changes after corneal transplantation: an in vivo confocal microscopy study. Invest Ophth Vis Sci 48: 621-626.
  • Nimmo RA, May GE, Enver T (2015). Primed and ready: understanding lineage commitment through single cell analysis. Trends Cell Biol 25: 459-467.
  • Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H (2004). Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. New Engl J Med 351: 1187-1196.
  • Notara M, Alatza A, Gilfillan J, Harris A, Levis H, Schrader S, Vernon A, Daniels J (2010). In sickness and in health: corneal epithelial stem cell biology, pathology and therapy. Exp Eye Res 90: 188- 195.
  • Nubile M, Curcio C, Dua HS, Calienno R, Lanzini M, Iezzi M, Mastropasqua R, Agnifili L, Mastropasqua L (2013). Pathological changes of the anatomical structure and markers of the limbal stem cell niche due to inflammation. Mol Vis 19: 516-525.
  • Ohyama M, Terunuma A, Tock CL, Radonovich MF, Pise-Masison CA, Hopping SB, Brady JN, Udey MC, Vogel JC (2006). Characterization and isolation of stem cell–enriched human hair follicle bulge cells. J Clin Invest 116: 249-260.
  • Oie Y, Nishida K (2013). Regenerative medicine for the cornea. BioMed Res Int 2013: 428247.
  • Ono K, Yokoo S, Mimura T, Usui T, Miyata K, Araie M, Yamagami S, Amano S (2007). Autologous transplantation of conjunctival epithelial cells cultured on amniotic membrane in a rabbit model. Mol Vis 13: 1138-1143.
  • Qu Y, Chi W, Hua X, Deng R, Li J, Liu Z, Pflugfelder SC, Li DQ (2015). Unique expression pattern and functional role of periostin in human limbal stem cells. PLoS One 10: e0117139.
  • Pedrotti E, Passilongo M, Fasolo A, Nubile M, Parisi G, Mastropasqua R, Ficial S, Bertolin M, Di Iorio E, Ponzin D (2015). In vivo confocal microscopy 1 year after autologous cultured limbal stem cell grafts. Ophthalmology 8: 1660-1668.
  • Pellegrini G, Rama P, De Luca M (2011). Vision from the right stem. Trends Mol Med 17: 1-7.
  • Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M, Pellegrini G (2001). Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency1. Transplantation 72: 1478- 1485.
  • Ramachandran C, Basu S, Sangwan VS, Balasubramanian D (2014). Concise review: the coming of age of stem cell treatment for corneal surface damage. Stem Cells Transl Med 3: 1160.
  • Reza HM, Ng BY, Gimeno FL, Phan TT, Ang LPK (2011). Umbilical cord lining stem cells as a novel and promising source for ocular surface regeneration. Stem Cell Rev Rep 7: 935-947.
  • Sangwan VS, Basu S, Vemuganti GK, Sejpal K, Subramaniam SV, Bandyopadhyay S, Krishnaiah S, Gaddipati S, Tiwari S, Balasubramanian D (2011). Clinical outcomes of xeno-free autologous cultivated limbal epithelial transplantation: a 10- year study. Brit J Ophthalmol 96: 1525-1529.
  • Sangwan VS, Matalia HP, Vemuganti GK, Fatima A, Ifthekar G, Singh S, Nutheti R, Rao GN (2006). Clinical outcome of autologous cultivated limbal epithelium transplantation. Indian J Ophthalmol 54: 29-34.
  • Sangwan VS, Vemuganti GK, Iftekhar G, Bansal AK, Rao GN (2003). Use of autologous cultured limbal and conjunctival epithelium in a patient with severe bilateral ocular surface disease induced by acid injury: a case report of unique application. Cornea 22: 478-481.
  • Schlötzer-Schrehardt U, Kruse FE (2005). Identification and characterization of limbal stem cells. Exp Eye Res 81: 247-264. Schwab IR, Reyes M, Isseroff RR (2000). Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea 19: 421-426.
  • Secker GA, Daniels JT (2009). Limbal epithelial stem cells of the cornea. In: The Stem Cell Research Community, editors. StemBook.doi/10.3824/stembook.1.48.1,http://www. stembook.org.
  • Sevim DG, Acar U (2013). Stem cell-based treatment modalities for limbal stem cell deficiency. Niche 2: 25-30.
  • Shimazaki J, Kaido M, Shinozaki N, Shimmura S, Munkhbat B, Hagihara M, Tsuji K, Tsubota K (1999). Evidence of longterm survival of donor-derived cells after limbal allograft transplantation. Invest Ophth Vis Sci 40: 1664-1668.
  • Shortt AJ, Secker GA, Rajan MS, Meligonis G, Dart JK, Tuft SJ, Daniels JT (2008). Ex vivo expansion and transplantation of limbal epithelial stem cells. Ophthalmology 115: 1989-1997.
  • Thoft RA, Friend J (1983). The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophth Vis Sci 24: 1442-1443.
  • Tsai RJF, Li LM, Chen JK (2000). Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. New Engl J Med 343: 86-93.
  • Vazirani J, Basu S, Kenia H, Ali MH, Kacham S, Mariappan I, Sangwan VS (2014). Unilateral partial limbal stem cell deficiency: contralateral versus ipsilateral autologous cultivated limbal epithelial transplantation. Am J Ophthalmol 157: 584-590.
  • Villa C, Erratico S, Razini P, Fiori F, Rustichelli F, Torrente Y, Belicchi M (2010). Stem cell tracking by nanotechnologies. Int J Mol Sci 11: 1070-1081.
  • West J D, N J Dorà, Collinson J M (2015). Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance. World J Stem Cells 7: 281-299.
  • Yin JQ, Liu WQ, Liu C, Zhang YH, Hua JL, Liu WS, Dou ZY, Lei AM (2013). Reconstruction of damaged corneal epithelium using Venus-labeled limbal epithelial stem cells and tracking of surviving donor cells. Exp Eye Res 115: 246-254.
  • Yoshida S, Shimmura S, Nagoshi N, Fukuda K, Matsuzaki Y, Okano H, Tsubota K (2006). Isolation of multipotent neural crest‐ derived stem cells from the adult mouse cornea. Stem Cells 24: 2714-2722.
  • Zajicova A, Pokorna K, Lencova A, Krulova M, Svobodova E, Kubinova S, Sykova E, Pradny M, Michalek J, Svobodova J (2010). Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell Transplant 19: 1281-1290.