Current status of stem cell therapy: opportunities and limitations

Current status of stem cell therapy: opportunities and limitations

Over recent years stem cells have stood out as a promising tool for regenerative medicine, providing alternative therapeutic solutions for a large number of diseases. Many clinical trials using stem cells or induced pluripotent stem cells are focused on the repair and regeneration of various tissues and organs in degenerative diseases, whose current treatment only succeeds in slowing down the progression of the disease. Although the preliminary results are interesting, further studies are required in order to evaluate the safety and benefits of stem cell therapy, considering the teratoma development and ethical considerations in embryonic stem cell cases or reprogramming-induced somatic mutations and epigenetic defects. This review summarizes several current clinical and nonclinical data on the use of embryonic stem cells, mesenchymal stem cells, and induced pluripotent stem cells in various diseases.

___

  • Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilic J, Pekarik V, Tiscornia G et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26: 1276-1284.
  • Abdelalim EM, Bonnefond A, Bennaceur-Griscelli A, Froguel P (2014). Pluripotent stem cells as a potential tool for disease modelling and cell therapy in diabetes. Stem Cell Rev 10: 327-337.
  • Achilleos A, Trainor PA (2012). Neural crest stem cells: discovery, properties and potential for therapy. Cell Res 22: 288-304.
  • Amado NG, Predes D, Moreno MM, Carvalho IO, Mendes FA, Abreu JG (2014). Flavonoids and Wnt/beta-catenin signaling: potential role in colorectal cancer therapies. Int J Mol Sci 15: 12094-12106.
  • Ambasudhan R, Dolatabadi N, Nutter A, Masliah E, McKercher SR, Lipton SA (2014). Potential for cell therapy in Parkinson's disease using genetically programmed human embryonic stem cell-derived neural progenitor cells. J Comp Neurol 522: 2845-2856.
  • Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA et al. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8: 376-388.
  • Attari F, Sepehri H, Ansari H, Hassani SN, Esfandiari F, Asgari B, Shahverdi A, Baharvand H (2014). Efficient induction of pluripotency in primordial germ cells by dual inhibition of TGF-beta and ERK signaling pathways. Stem Cells Dev 23: 1050-1061.
  • Aulicino F, Theka I, Ombrato L, Lluis F, Cosma MP (2014). Temporal perturbation of the Wnt signaling pathway in the control of cell reprogramming is modulated by TCF1. Stem Cell Reports 2: 707-720.
  • Bagher Z, Azami M, Ebrahimi-Barough S, Mirzadeh H, Solouk A, Soleimani M, Ai J, Nourani MR, Joghataei MT (2015). Differentiation of Wharton's jelly-derived mesenchymal stem cells into motor neuron-like cells on three-dimensional collagen-grafted nanofibers. Mol Neurobiol (in press).
  • Ban K, Park HJ, Kim S, Andukuri A, Cho KW, Hwang JW, Cha HJ, Kim SY, Kim WS, Jun HW et al. (2014). Cell therapy with embryonic stem cell-derived cardiomyocytes encapsulated in injectable nanomatrix gel enhances cell engraftment and promotes cardiac repair. ACS Nano 8: 10815-10825.
  • Bellin M, Marchetto MC, Gage FH, Mummery CL (2012). Induced pluripotent stem cells: the new patient? Nat Rev Mol Cell Biol 13: 713-726.
  • Bose B, Katikireddy KR, Shenoy PS (2014). Regenerative medicine for diabetes: differentiation of human pluripotent stem cells into functional beta-cells in vitro and their proposed journey to clinical translation. Vitam Horm 95: 223-248.
  • Brandl B, Schneider SA, Loring JF, Hardy J, Gribbon P, Muller FJ (2015). Stem cell reprogramming: basic implications and future perspective for movement disorders. Mov Disord 30: 301-312.
  • Chen M, Zhang H, Wu J, Xu L, Xu D, Sun J, He Y, Zhou X, Wang Z, Wu L et al. (2012). Promotion of the induction of cell pluripotency through metabolic remodeling by thyroid hormone triiodothyronine-activated PI3K/AKT signal pathway. Biomaterials 33: 5514-5523.
  • Chichagova V, Sanchez-Vera I, Armstrong L, Steel D, Lako M (2016). Generation of human induced pluripotent stem cells using RNA-based Sendai virus system and pluripotency validation of the resulting cell population. Methods Mol Biol 1353: 285-307.
  • Chivu-Economescu M, Rubach M (2015). Hematopoietic stem cells therapies. Curr Stem Cell Res Ther (in press).
  • Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD, Liu JO, Deng C, Ye Z, Jang YY (2013). Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 57: 2458-2468.
  • Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ et al. (2014). Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510: 273-277.
  • Christman KL, Fok HH, Sievers RE, Fang Q, Lee RJ (2004). Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng 10: 403-409.
  • Chuang JH, Tung LC, Lin Y (2015). Neural differentiation from embryonic stem cells in vitro: an overview of the signaling pathways. World J Stem Cells 7: 437-447.
  • Ciccocioppo R, Gallia A, Sgarella A, Kruzliak P, Gobbi PG, Corazza GR (2015). Long-term follow-up of Crohn disease fistulas after local injections of bone marrow-derived mesenchymal stem cells. Mayo Clin Proc 90: 747-755.
  • Cipriani P, Di Benedetto P, Liakouli V, Del Papa B, Di Padova M, Di Ianni M, Marrelli A, Alesse E, Giacomelli R (2013). Mesenchymal stem cells (MSCs) from scleroderma patients (SSc) preserve their immunomodulatory properties although senescent and normally induce T regulatory cells (Tregs) with a functional phenotype: implications for cellular-based therapy. Clin Exp Immunol 173: 195-206.
  • Clevers H, Loh KM, Nusse R (2014). Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346: 1248012.
  • Crane AM, Kramer P, Bui JH, Chung WJ, Li XS, Gonzalez-Garay ML, Hawkins F, Liao W, Mora D, Choi S et al. (2015). Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports 4: 569-577.
  • David L, Polo JM (2014). Phases of reprogramming. Stem Cell Res 12: 754-761.
  • Dupin E, Calloni G, Real C, Goncalves-Trentin A, Le Douarin NM (2007). Neural crest progenitors and stem cells. C R Biol 330: 521-529.
  • El-Badawy A, El-Badri N (2015). Regulators of pluripotency and their implications in regenerative medicine. Stem Cells Cloning 8: 67-80.
  • Fang T, Lineaweaver WC, Sailes FC, Kisner C, Zhang F (2014). Clinical application of cultured epithelial autografts on acellular dermal matrices in the treatment of extended burn injuries. Ann Plast Surg 73: 509-515.
  • Feron F, Perry C, Girard SD, Mackay-Sim A (2013). Isolation of adult stem cells from the human olfactory mucosa. Methods Mol Biol 1059: 107-114.
  • Fletcher RB, Prasol MS, Estrada J, Baudhuin A, Vranizan K, Choi YG, Ngai J (2011). p63 regulates olfactory stem cell self-renewal and differentiation. Neuron 72: 748-759.
  • Fontes A, Macarthur CC, Lieu PT, Vemuri MC (2013). Generation of human-induced pluripotent stem cells (hiPSCs) using episomal vectors on defined Essential 8 Medium conditions. Methods Mol Biol 997: 57-72.
  • Forte D, Ciciarello M, Valerii MC, De Fazio L, Cavazza E, Giordano R, Parazzi V, Lazzari L, Laureti S, Rizzello F et al. (2015). Human cord blood-derived platelet lysate enhances the therapeutic activity of adipose-derived mesenchymal stromal cells isolated from Crohn's disease patients in a mouse model of colitis. Stem Cell Res Ther 6: 170.
  • Fuerstenau-Sharp M, Zimmermann ME, Stark K, Jentsch N, Klingenstein M, Drzymalski M, Wagner S, Maier LS, Hehr U, Baessler A et al. (2015). Generation of highly purified human cardiomyocytes from peripheral blood mononuclear cell-derived induced pluripotent stem cells. PLoS One 10: e0126596.
  • Fujita J, Itabashi Y, Seki T, Tohyama S, Tamura Y, Sano M, Fukuda K (2012). Myocardial cell sheet therapy and cardiac function. Am J Physiol Heart Circ Physiol 303: H1169-1182.
  • Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. P Jpn Acad B-Phys 85: 348-362.
  • Gheorghisan-Galateanu AA, Hinescu ME, Enciu AM (2014). Ovarian adult stem cells: hope or pitfall? J Ovarian Res 7: 71.
  • Ghobadi F, Mehrabani D, Mehrabani G (2015). Regenerative potential of endometrial stem cells: a mini review. World J Plast Surg 4: 3-8.
  • Gieseck RL 3rd, Colquhoun J, Hannan NR (2015). Disease modeling using human induced pluripotent stem cells: lessons from the liver. Biochim Biophys Acta 1851: 76-89.
  • Giraud MN, Ayuni E, Cook S, Siepe M, Carrel TP, Tevaearai HT (2008). Hydrogel-based engineered skeletal muscle grafts normalize heart function early after myocardial infarction. Artif Organs 32: 692-700.
  • Goodarzi P, Aghayan HR, Larijani B, Soleimani M, Dehpour AR, Sahebjam M, Ghaderi F, Arjmand B (2015). Stem cell-based approach for the treatment of Parkinson's disease. Med J Islam Repub Iran 29: 168.
  • Govoni KE (2015). Horse Species Symposium: Use of mesenchymal stem cells in fracture repair in horses. J Anim Sci 93: 871-878.
  • Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, Hess C, Zweigerdt R, Gruh I, Meyer J, Wagner S et al. (2009). Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5: 434-441.
  • Haile Y, Nakhaei-Nejad M, Boakye PA, Baker G, Smith PA, Murray AG, Giuliani F, Jahroudi N (2015). Reprogramming of HUVECs into induced pluripotent stem cells (HiPSCs), generation and characterization of HiPSC-derived neurons and astrocytes. PLoS One 10: e0119617.
  • Hanna CB, Hennebold JD (2014). Ovarian germline stem cells: an unlimited source of oocytes? Fertil Steril 101: 20-30.
  • Havens AM, Shiozawa Y, Jung Y, Sun H, Wang J, McGee S, Mishra A, Taichman LS, Danciu T, Jiang Y et al. (2013). Human very small embryonic-like cells generate skeletal structures, in vivo. Stem Cells Dev 22: 622-630.
  • Hawkins K, Joy S, McKay T (2014). Cell signalling pathways underlying induced pluripotent stem cell reprogramming. World J Stem Cells 6: 620-628.
  • Hemmrich K, von Heimburg D, Rendchen R, Di Bartolo C, Milella E, Pallua N (2005). Implantation of preadipocyte-loaded hyaluronic acid-based scaffolds into nude mice to evaluate potential for soft tissue engineering. Biomaterials 26: 7025-7037.
  • Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR (2009). Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2: 198-210.
  • Ho R, Papp B, Hoffman JA, Merrill BJ, Plath K (2013). Stage-specific regulation of reprogramming to induced pluripotent stem cells by Wnt signaling and T cell factor proteins. Cell Rep 3: 2113-2126.
  • Holditch SJ, Terzic A, Ikeda Y (2014). Concise review: pluripotent stem cell-based regenerative applications for failing beta-cell function. Stem Cells Transl Med 3: 653-661.
  • Holloway JL, Ma H, Rai R, Hankenson KD, Burdick JA (2015). Synergistic effects of SDF-1α and BMP-2 delivery from proteolytically degradable hyaluronic acid hydrogels for bone repair. Macromol Biosci 15: 1218-1223.
  • Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K et al. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341: 651-654.
  • Hsiao LC, Carr C, Chang KC, Lin SZ, Clarke K (2013). Stem cell-based therapy for ischemic heart disease. Cell Transplant 22: 663-675.
  • Hu X, Zhang L, Mao SQ, Li Z, Chen J, Zhang RR, Wu HP, Gao J, Guo F, Liu W et al. (2014). Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 14: 512-522.
  • Jang MJ, Kim HS, Lee HG, Kim GJ, Jeon HG, Shin HS, Chang SK, Hur GH, Chong SY, Oh D et al. (2013). Placenta-derived mesenchymal stem cells have an immunomodulatory effect that can control acute graft-versus-host disease in mice. Acta Haematol 129: 197-206.
  • Kabiri M, Oraee-Yazdani S, Shafiee A, Hanaee-Ahvaz H, Dodel M, Vaseei M, Soleimani M (2015). Neuroregenerative effects of olfactory ensheathing cells transplanted in a multi-layered conductive nanofibrous conduit in peripheral nerve repair in rats. J Biomed Sci 22: 35.
  • Kadota Y, Yagi H, Inomata K, Matsubara K, Hibi T, Abe Y, Kitago M, Shinoda M, Obara H, Itano O et al. (2014). Mesenchymal stem cells support hepatocyte function in engineered liver grafts. Organogenesis 10: 268-277.
  • Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458: 771-775.
  • Karanes C, Nelson GO, Chitphakdithai P, Agura E, Ballen KK, Bolan CD, Porter DL, Uberti JP, King RJ, Confer DL (2008). Twenty years of unrelated donor hematopoietic cell transplantation for adult recipients facilitated by the National Marrow Donor Program. Biol Blood Marrow Transplant 14: 8-15.
  • Katari R, Peloso A, Orlando G (2014). Tissue engineering and regenerative medicine: semantic considerations for an evolving paradigm. Front Bioeng Biotechnol 2: 57.
  • Kfoury C (2007). Therapeutic cloning: promises and issues. McGill J Med 10: 112-120.
  • Khan M, Xu Y, Hua S, Johnson J, Belevych A, Janssen PM, Gyorke S, Guan J, Angelos MG (2015). Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on an aligned-nanofiber cardiac patch. PLoS One 10: e0126338.
  • Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4: 472-476.
  • Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M et al. (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454: 646-650.
  • Kim JS, Choi HW, Choi S, Do JT (2011). Reprogrammed pluripotent stem cells from somatic cells. Int J Stem Cells 4: 1-8.
  • Kitazawa Y, Li XK, Xie L, Zhu P, Kimura H, Takahara S (2012). Bone marrow-derived conventional, but not cloned, mesenchymal stem cells suppress lymphocyte proliferation and prevent graft-versus-host disease in rats. Cell Transplant 21: 581-590.
  • Klimanskaya I, Rosenthal N, Lanza R (2008). Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov 7: 131-142.
  • Kobayashi Y, Okada Y, Itakura G, Iwai H, Nishimura S, Yasuda A, Nori S, Hikishima K, Konomi T, Fujiyoshi K et al. (2012). Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One 7: e52787.
  • Kutschka I, Chen IY, Kofidis T, Arai T, von Degenfeld G, Sheikh AY, Hendry SL, Pearl J, Hoyt G, Sista R et al. (2006). Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation 114: I167-173.
  • Landa N, Miller L, Feinberg MS, Holbova R, Shachar M, Freeman I, Cohen S, Leor J (2008). Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117: 1388-1396.
  • Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q et al. (2010). A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7: 51-63.
  • Lim JY, Park MJ, Im KI, Kim N, Jeon EJ, Kim EJ, Cho ML, Cho SG (2014). Combination cell therapy using mesenchymal stem cells and regulatory T-cells provides a synergistic immunomodulatory effect associated with reciprocal regulation of TH1/TH2 and th17/treg cells in a murine acute graft-versus-host disease model. Cell Transplant 23: 703-714.
  • Lin T, Wu S (2015). Reprogramming with small molecules instead of exogenous transcription factors. Stem Cells Int 2015: 794632.
  • Liu H, Ye Z, Kim Y, Sharkis S, Jang YY (2010). Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology 51: 1810-1819.
  • Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38: 431-440.
  • Lu WN, Lu SH, Wang HB, Li DX, Duan CM, Liu ZQ, Hao T, He WJ, Xu B, Fu Q et al. (2009). Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng Pt A 15: 1437-1447.
  • Ma L, Aijima R, Hoshino Y, Yamaza H, Tomoda E, Tanaka Y, Sonoda S, Song G, Zhao W, Nonaka K et al. (2015). Transplantation of mesenchymal stem cells ameliorates secondary osteoporosis through interleukin-17-impaired functions of recipient bone marrow mesenchymal stem cells in MRL/lpr mice. Stem Cell Res Ther 6: 104.
  • Ma T, Xie M, Laurent T, Ding S (2013). Progress in the reprogramming of somatic cells. Circ Res 112: 562-574.
  • Mariano ED, Teixeira MJ, Marie SK, Lepski G (2015). Adult stem cells in neural repair: current options, limitations and perspectives. World J Stem Cells 7: 477-482.
  • Marson A, Foreman R, Chevalier B, Bilodeau S, Kahn M, Young RA, Jaenisch R (2008). Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 3: 132-135.
  • McNamara LE, Turner LA, Burgess KV (2015). Systems biology approaches applied to regenerative medicine. Curr Pathobiol Rep 3: 37-45.
  • Mead B, Berry M, Logan A, Scott RA, Leadbeater W, Scheven BA (2015). Stem cell treatment of degenerative eye disease. Stem Cell Res 14: 243-257.
  • Miki K, Uenaka H, Saito A, Miyagawa S, Sakaguchi T, Higuchi T, Shimizu T, Okano T, Yamanaka S, Sawa Y (2012). Bioengineered myocardium derived from induced pluripotent stem cells improves cardiac function and attenuates cardiac remodeling following chronic myocardial infarction in rats. Stem Cells Transl Med 1: 430-437.
  • Miyazaki S, Yamamoto H, Miyoshi N, Takahashi H, Suzuki Y, Haraguchi N, Ishii H, Doki Y, Mori M (2012). Emerging methods for preparing iPS cells. Jpn J Clin Oncol 42: 773-779.
  • Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F et al. (2011). Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8: 633-638.
  • Mizuno H, Tobita M, Uysal AC (2012). Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 30: 804-810.
  • Murayama H, Masaki H, Sato H, Hayama T, Yamaguchi T, Nakauchi H (2015). Successful reprogramming of epiblast stem cells by blocking nuclear localization of beta-catenin. Stem Cell Reports 4: 103-113.
  • Nakamura M, Okano H (2013). Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res 23: 70-80.
  • Nguyen HT, Geens M, Spits C (2013). Genetic and epigenetic instability in human pluripotent stem cells. Hum Reprod Update 19: 187-205.
  • Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, Ikeda E, Yamanaka S, Miura K (2013). Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112: 523-533.
  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science 322: 949-953.
  • Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008). Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 14: 213-221.
  • Özdal-Kurt F, Tuğlu I, Vatansever HS, Tong S, Deliloğlu-Gürhan SI (2015). The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction. Biotech Histochem 90: 516-528.
  • Porada CD, Atala AJ, Almeida-Porada G (2015). The hematopoietic system in the context of regenerative medicine. Methods (in press).
  • Puri MC, Nagy A (2012). Concise review: Embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells 30: 10-14.
  • Raab S, Klingenstein M, Liebau S, Linta L (2014). A comparative view on human somatic cell sources for iPSC generation. Stem Cells Int 2014: 768391.
  • Ramos-Zuniga R, Gonzalez-Perez O, Macias-Ornelas A, Capilla-Gonzalez V, Quinones-Hinojosa A (2012). Ethical implications in the use of embryonic and adult neural stem cells. Stem Cells Int 2012: 470949.
  • Ratajczak MZ, Marycz K, Poniewierska-Baran A, Fiedorowicz K, Zbucka-Kretowska M, Moniuszko M (2014). Very small embryonic-like stem cells as a novel developmental concept and the hierarchy of the stem cell compartment. Adv Med Sci 59: 273-280.
  • Ratajczak MZ, Shin DM, Liu R, Mierzejewska K, Ratajczak J, Kucia M, Zuba-Surma EK (2012). Very small embryonic/epiblast-like stem cells (VSELs) and their potential role in aging and organ rejuvenation--an update and comparison to other primitive small stem cells isolated from adult tissues. Aging (Albany NY) 4: 235-246.
  • Ravindran S, George A (2015). Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration. Front Physiol 6: 118.
  • Reardon S, Cyranoski D (2014). Japan stem-cell trial stirs envy. Nature 513: 287-288.
  • Resnick IB, Barkats C, Shapira MY, Stepensky P, Bloom AI, Shimoni A, Mankuta D, Varda-Bloom N, Rheingold L, Yeshurun M et al. (2013). Treatment of severe steroid resistant acute GVHD with mesenchymal stromal cells (MSC). Am J Blood Res 3: 225-238.
  • Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, Gauvin R, Narayan K, Karanu F, O'Neil JJ et al. (2012). Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61: 2016-2029.
  • Ross CA, Akimov SS (2014). Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum Mol Genet 23: R17-26.
  • Rossignol J, Fink K, Davis K, Clerc S, Crane A, Matchynski J, Lowrance S, Bombard M, Dekorver N, Lescaudron L et al. (2014). Transplants of adult mesenchymal and neural stem cells provide neuroprotection and behavioral sparing in a transgenic rat model of Huntington's disease. Stem Cells 32: 500-509.
  • Ruiz S, Brennand K, Panopoulos AD, Herrerias A, Gage FH, Izpisua-Belmonte JC (2010). High-efficient generation of induced pluripotent stem cells from human astrocytes. PLoS One 5: e15526.
  • Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A, Woltjen K, Nagy A, Wrana JL (2010). Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7: 64-77.
  • Sanges D, Cosma MP (2010). Reprogramming cell fate to pluripotency: the decision-making signalling pathways. Int J Dev Biol 54: 1575-1587.
  • Sarkar A, Hochedlinger K (2013). The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12: 15-30.
  • Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012). Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379: 713-720.
  • Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman JP, Davis JL, Heilwell G, Spirn M et al. (2015). Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385: 509-516.
  • Schwerk A, Altschuler J, Roch M, Gossen M, Winter C, Berg J, Kurtz A, Akyuz L, Steiner B (2015). Adipose-derived human mesenchymal stem cells induce long-term neurogenic and anti-inflammatory effects and improve cognitive but not motor performance in a rat model of Parkinson's disease. Regen Med 10: 431-446.
  • Seki T, Fukuda K (2015). Methods of induced pluripotent stem cells for clinical application. World J Stem Cells 7: 116-125.
  • Sieber-Blum M (2014). Human epidermal neural crest stem cells as candidates for cell-based therapies, disease modeling, and drug discovery. Birth Defects Res C 102: 221-226.
  • Sirbu-Boeti MP, Chivu M, Paslaru LL, Efrimescu C, Herlea V, Pecheanu C, Moldovan L, Dragomir L, Bleotu C, Ciucur E et al. (2009). Transplantation of mesenchymal stem cells cultured on biomatrix support induces repairing of digestive tract defects, in animal model. Chirurgia (Bucur) 104: 55-65.
  • Song B, Niclis JC, Alikhan MA, Sakkal S, Sylvain A, Kerr PG, Laslett AL, Bernard CA, Ricardo SD (2011). Generation of induced pluripotent stem cells from human kidney mesangial cells. J Am Soc Nephrol 22: 1213-1220.
  • Stamegna JC, Girard SD, Veron A, Sicard G, Khrestchatisky M, Feron F, Roman FS (2014). A unique method for the isolation of nasal olfactory stem cells in living rats. Stem Cell Res 12: 673-679.
  • Stuckey DW, Shah K (2014). Stem cell-based therapies for cancer treatment: separating hope from hype. Nat Rev Cancer 14: 683-691.
  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861-872.
  • Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676.
  • Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, Zhang RR, Ueno Y, Zheng YW, Koike N et al. (2013). Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499: 481-484.
  • Tang Y, Tian XC (2013). JAK-STAT3 and somatic cell reprogramming. JAKSTAT 2: e24935.
  • Tanna T, Sachan V (2014). Mesenchymal stem cells: potential in treatment of neurodegenerative diseases. Curr Stem Cell Res Ther 9: 513-521.
  • Teng L, Labosky PA (2006). Neural crest stem cells. Adv Exp Med Biol 589: 206-212.
  • Tolar J, Villeneuve P, Keating A (2011). Mesenchymal stromal cells for graft-versus-host disease. Hum Gene Ther 22: 257-262.
  • Utikal J, Maherali N, Kulalert W, Hochedlinger K (2009). Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122: 3502-3510.
  • Vidal SE, Amlani B, Chen T, Tsirigos A, Stadtfeld M (2014). Combinatorial modulation of signaling pathways reveals cell-type-specific requirements for highly efficient and synchronous iPSC reprogramming. Stem Cell Reports 3: 574-584.
  • von Heimburg D, Kuberka M, Rendchen R, Hemmrich K, Rau G, Pallua N (2003). Preadipocyte-loaded collagen scaffolds with enlarged pore size for improved soft tissue engineering. Int J Artif Organs 26: 1064-1076.
  • Wang S, Qu X, Zhao RC (2011). Mesenchymal stem cells hold promise for regenerative medicine. Front Med 5: 372-378.
  • Wang Y, Han ZB, Song YP, Han ZC (2012). Safety of mesenchymal stem cells for clinical application. Stem Cells Int 2012: 652034.
  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7: 618-630.
  • Wei CC, Lin AB, Hung SC (2014). Mesenchymal stem cells in regenerative medicine for musculoskeletal diseases: bench, bedside, and industry. Cell Transplant 23: 505-512.
  • Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M et al. (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458: 766-770.
  • Woo DH, Kim SK, Lim HJ, Heo J, Park HS, Kang GY, Kim SE, You HJ, Hoeppner DJ, Kim Y et al. (2012). Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice. Gastroenterology 142: 602-611.
  • Wu Y, Persaud SJ, Jones PM (2011). Stem cells and the endocrine pancreas. Br Med Bull 100: 123-135.
  • Wyse RD, Dunbar GL, Rossignol J (2014). Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int J Mol Sci 15: 1719-1745.
  • Yoo CH, Na HJ, Lee DS, Heo SC, An Y, Cha J, Choi C, Kim JH, Park JC, Cho YS (2013). Endothelial progenitor cells from human dental pulp-derived iPS cells as a therapeutic target for ischemic vascular diseases. Biomaterials 34: 8149-8160.
  • Yoo G, Lim JS (2009). Tissue engineering of injectable soft tissue filler: using adipose stem cells and micronized acellular dermal matrix. J Korean Med Sci 24: 104-109.
  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917-1920.
  • Yuan X, Wan H, Zhao X, Zhu S, Zhou Q, Ding S (2011). Brief report: combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts. Stem Cells 29: 549-553.
  • Zamora DO, Natesan S, Becerra S, Wrice N, Chung E, Suggs LJ, Christy RJ (2013). Enhanced wound vascularization using a dsASCs seeded FPEG scaffold. Angiogenesis 16: 745-757.
  • Zhou QI, Yang C, Yang P (2015). The promotional effect of mesenchymal stem cell homing on bone tissue regeneration. Curr Stem Cell Res Ther (in press).
  • Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, Wang Y, Zhang Y, Zhuang Q, Li Y et al. (2012). Generation of human induced pluripotent stem cells from urine samples. Nat Protoc 7: 2080-2089.
  • Zhou W, Freed CR (2009). Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27: 2667-2674.
  • Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T, Kim J, Zhang K, Ding S (2010). Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7: 651-655.