Gut-lung axis and dysbiosis in COVID-19

Gut-lung axis and dysbiosis in COVID-19

COVID-19, a novel infectious disease, caused by SARS-CoV-2, affected millions of people around the world with a high mortality rate. Although SARS-CoV-2 mainly causes lung infection, gastrointestinal symptoms described in COVID-19 patients and detection of the viral RNA in feces of infected patients drove attentions to a possible fecal-oral transmission route of SARS-CoV-2. However, not only the viral RNA but also the infectious viral particles are required for the viral infection and no proof has been demonstrated the transmission of the infectious virus particles via the fecal-oral route yet. Growing evidence indicates the crosstalk between gut microbiota and lung, that maintains host homeostasis and disease development with the association of immune system. This gut-lung interaction may influence the COVID-19 severity in patients with extrapulmonary conditions. Severity of COVID-19 has mostly associated with old ages and underlying medical conditions. Since the diversity in the gut microbiota decreases during aging, dysbiosis could be the reason for older adults being at high risk for severe illness from COVID-19. We believe that gut microbiota contributes to the course of COVID-19 due to its bidirectional relationship with immune system and lung. Dysbiosis in gut microbiota results in gut permeability leading to secondary infection and multiple organ failure. Conversely, disruption of the gut barrier integrity due to dysbiosis may lead to translocation of SARS-CoV-2 from the lung into the intestinal lumen via circulatory and lymphatic system. This review points out the role of dysbiosis of the gut microbiota involving in sepsis, on the severity of SARS-CoV-2 infection. Additionally, this review aims to clarify the ambiguity in fecal-oral transmission of SARS- CoV-2.

___

  • Aleman FDD, Valenzano DR (2019). Microbiome evolution during host aging. PLoS Pathogens 15 (7): 21-24. doi: 10.1371/journal. ppat.1007727
  • Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY et al. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the USA 101 (44): 15718-15723. doi: 10.1073/pnas.0407076101
  • Bajaj JS (2019). Altered microbiota in cirrhosis and its relationship to the development of infection. Clinical Liver Disease 14 (3): 107-111. doi: 10.1002/cld.827
  • Bertók L (2004). Bile acids in physico-chemical host defence. Pathophysiology 11 (3): 139-145. doi: 10.1016/j. pathophys.2004.09.002
  • Burcelin R, Garidou L, Pomié C (2012). Immuno-microbiota cross and talk: The new paradigm of metabolic diseases. Seminars in Immunology 24 (1): 67-74. doi: 10.1016/j.smim.2011.11.011
  • Chen N, Zhou M, Dong X, Qu J, Gong F et al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet 395 (10223): 507-513. doi: 10.1016/S0140-6736(20)30211-7
  • Chen Y, Chen L, Deng Q, Zhang G, Wu K et al. (2020). The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. Journal of Medical Virology 31: 1-8. doi: 10.1002/jmv.25825
  • D’Amico F, Baumgart DC, Danese S, Peyrin-Biroulet L (2020). Diarrhea during COVID-19 infection: pathogenesis, epidemiology, prevention and management. Clinical Gastroenterology and Hepatology. doi: 10.1016/j.cgh.2020.04.001
  • Darnell MER, Subbarao K, Feinstone SM, Taylor DR (2004). Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. Journal of Virological Methods 121 (1): 85-91. doi: 10.1016/j.jviromet.2004.06.006
  • Deitch EA (2012). Gut-origin sepsis: Evolution of a concept. Surgeon 10 (6): 350-356. doi: 10.1016/j.surge.2012.03.003
  • Dickson RP, Singer BH, Newstead MW, Falkowski NR, ErbDownward JR et al. (2017). Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nature Microbiology 1 (10): 16113. doi: 10.1038/ nmicrobiol.2016.113
  • Ding S, Liang TJ (2020). Is SARS-CoV-2 also an enteric pathogen with potential fecal-oral transmission: A COVID-19 virological and clinical review. Gastroenterology. doi: 10.1053/j. gastro.2020.04.052
  • Doig CJ, Sutherland LR, Sandham JD, Fick GH, Verhoef M et al. (1998). Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. Pneumologie, 52 (11): 441-451. doi: 10.1164/ajrccm.158.2.9710092
  • Elfiky AA (2020). Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sciences 248 (1). doi: 10.1016/j. lfs.2020.117477
  • Fanos V, Pintus MC, Pintus R, Marcialis MA (2020). Lung microbiota in the acute respiratory disease: from coronavirus to metabolomics. Journal of Pediatric and Neonatal Individualized Medicine 9 (1): 90139.
  • Feng G, Zheng KI, Yan Q-Q, Rios RS, Targher G et al. (2020). COVID-19 and liver dysfunction: current insights and emergent therapeutic strategies. Journal of Clinical and Translational Hepatology 8 (1): 18-24. doi: 10.14218/ JCTH.2020.00018
  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ et al. (2006). Metagenomic analysis of the human distal gut microbiome. Science 312 (5778): 1355-1359. doi: 10.1126/science.1124234
  • Gu J, Gong E, Zhang B, Zheng J, Gao Z et al. (2005). Multiple organ infection and the pathogenesis of SARS. Journal of Experimental Medicine 202 (3): 415-424. doi: 10.1084/ jem.20050828
  • Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ et al. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine 382: 1708-1720. doi: 10.1056/ NEJMoa2002032
  • Hanada S, Pirzadeh M, Carver KY, Deng JC (2018). Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Frontiers in Immunology 9: 1-15. doi: 10.3389/fimmu.2018.02640
  • Hickson M (2011). Probiotics in the prevention of antibioticassociated diarrhoea and Clostridium difficile infection. Therapeutic Advances in Gastroenterology 4 (3): 185-197. doi: 10.1177/1756283X11399115
  • Hilgenfeld R, Peiris M (2013). From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Research 100 (1): 286-295. doi: 10.1016/j.antiviral.2013.08.015
  • Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J et al. (2020). First case of 2019 novel coronavirus in the United States. New England Journal of Medicine 382 (10): 929-936. doi: 10.1056/NEJMoa2001191
  • Huang C, Wang Y, Li X, Ren L, Zhao J et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395 (10223): 497-506. doi: 10.1016/S0140- 6736(20)30183-5
  • Hufnagl K, Pali-Schöll I, Roth-Walter F, Jensen-Jarolim E (2020). Dysbiosis of the gut and lung microbiome has a role in asthma. Seminars in Immunopathology 42 (1): 75-93. doi: 10.1007/ s00281-019-00775-y
  • Ioannidis JPA, Axfors C, Contopoulos-Ioannidis DG (2020). Population-level COVID-19 mortality risk for non-elderly individuals overall and for non-elderly individuals without underlying diseases in pandemic epicenters. medRxiv. doi: 10.1101/2020.04.05.20054361
  • Kalantar-Zadeh K, Ward SA, Kalantar-Zadeh K, El-Omar EM (2020). Considering the effects of microbiome and diet on SARS-CoV-2 infection: Nanotechnology roles. ACS Nano 14 (5): 5179-5182. doi: 10.1021/acsnano.0c03402
  • Keely S, Talley NJ, Hansbro PM (2012). Pulmonary-intestinal crosstalk in mucosal inflammatory disease. Mucosal Immunology 5 (1): 7-18. doi: 10.1038/mi.2011.55
  • Li CK, Wu H, Yan H, Ma S, Wang L et al. (2008). T Cell responses to whole SARS coronavirus in humans. Journal of Immunology 181 (8): 5490-5500. doi: 10.4049/jimmunol.181.8.5490
  • Li X, Geng M, Peng Y, Meng L, Lu S (2020). Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis 10 (2): 102-108. doi: 10.1016/j. jpha.2020.03.001
  • Liang W, Feng Z, Rao S, Xiao C, Xue X et al. (2020). Diarrhoea may be underestimated: A missing link in 2019 novel coronavirus. Gut 69 (6): 1141-1143. doi: 10.1136/gutjnl-2020-320832
  • Lin L, Jiang X, Zhang Z, Huang S, Zhang Z et al. (2020). Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 69 (6): 997-1001. doi: 10.1136/gutjnl-2020-321013
  • Mahase E (2020). Coronavirus covid-19 has killed more people than SARS and MERS combined, despite lower case fatality rate. BMJ 368:m641. doi: 10.1136/bmj.m641
  • Minemura M, Shimizu Y (2015). Gut microbiota and liver disease. World Journal of Gastroenterol 21 (6): 1691-1702.
  • Ostaff MJ, Stange EF, Wehkamp J (2013). Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Molecular Medicine 5 (10): 1-19. doi: 10.1002/emmm.201201773
  • Pan L, Mu M, Yang P, Sun Y, Wang R et al. (2020). Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: A descriptive, cross-sectional, multicenter study. The American Journal of Gastroenterology 115 (5): 766- 773. doi: 10.14309/ajg.0000000000000620
  • Peeri NC, Shrestha N, Rahman MS, Zak R, Tan Z et al. (2020). The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? International Journal of Epidemiology. doi: 10.1093/ije/dyaa033
  • Pratelli A (2008). Canine coronavirus inactivation with physical and chemical agents. Veterinary Journal 177 (1): 71-79. doi: 10.1016/j.tvjl.2007.03.019
  • Proctor LM (2011). The human microbiome project in 2011 and beyond. Cell Host and Microbe 10 (4): 287-291. doi: 10.1016/j. chom.2011.10.001
  • Roussos A, Koursarakos P, Patsopoulos D, Gerogianni I, Philippou N (2003). Increased prevalence of irritable bowel syndrome in patients with bronchial asthma. Respiratory Medicine 97 (1): 75-79. doi: 10.1053/rmed.2001.1409
  • Ruan Q, Yang K, Wang W, Jiang L, Song J (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine 46: 846-848. doi: 10.1007/s00134-020-05991-x
  • Rutten EPA, Lenaerts K, Buurman WA, Wouters EFM (2014). Disturbed intestinal integrity in patients with COPD: Effects of activities of daily living. Chest 145 (2): 245-252. doi: 10.1378/ chest.13-0584
  • Salazar N, Valdés-Varela L, González S, Gueimonde M, de los Reyes-Gavilán CG (2017). Nutrition and the gut microbiome in the elderly. Gut Microbes 8 (2): 82-97. doi: 10.1080/19490976.2016.1256525
  • Schrezenmeir J, de Vrese M (2001). Probiotics, prebiotics, and synbiotics-approaching a definition. American Journal of Clinical Nutrition 73 (2 Suppl): 361S-364S. doi: 10.1093/ ajcn/73.2.361s
  • Song Y, Liu P, Shi XL, Chu YL, Zhang J (2020). SARS- CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut 69 (6): 1143-1144. doi: 10.1136/gutjnl-2020-320891
  • Sun Z, Cai X, Gu C, Zhang R, Han W et al. (2020). Stability of the COVID-19 virus under wet, dry and acidic conditions. medRxiv. doi: 10.1101/2020.04.09.20058875
  • Tai N, Wong FS, Wen L (2015). The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Reviews in Endocrine and Metabolic Disorders 16 (1): 55-65. doi: 10.1007/s11154-015-9309-0
  • Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS et al. (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 143 (4): 913-916.e7. doi: 10.1053/j.gastro.2012.06.031
  • Wan Y, Shang J, Graham R, Baric RS, Li F (2020). Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology 94 (7): 1-9. doi: 10.1128/JVI.00127-20
  • Wang D, Hu B, Hu C, Zhu F, Liu X et al. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirusinfected pneumonia in Wuhan, China. JAMA - Journal of the American Medical Association 323 (11): 1061-1069. doi: 10.1001/jama.2020.1585
  • Wang H, Ma S (2008). The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. American Journal of Emergency Medicine 26 (6): 711-715. doi: 10.1016/j.ajem.2007.10.031
  • Wang J, Li F, Wei H, Lian ZX, Sun R et al. (2014). Respiratory influenza virus infection induces intestinal immune injury via microbiotamediated Th17 cell-dependent inflammation. Journal of Experimental Medicine 211 (12): 2397-2410. doi: 10.1084/jem.20140625
  • Whittier CA (2017). Fecal-Oral Transmission. In: Fuentes A (editor). The International Encyclopedia of Primatology (ss. 400–401). West Sussex, UK: John Wiley & Sons, Inc.
  • World Health Organization (2003). Consensus document on the epidemiology of severe acute respiratory syndrome (SARS). Geneva, Switzerland: WHO.
  • World Health Organization (2020). WHO Director-General’s opening remarks at the media briefing on COVID-19. Geneva, Switzerland: WHO.
  • Wu A, Peng Y, Huang B, Ding X, Wang X et al. (2020). Genome composition and divergence of the novel coronavirus (2019- nCoV) originating in China. Cell Host and Microbe 27 (3): 325-328. doi: 10.1016/j.chom.2020.02.001
  • Wu F, Zhao S, Yu B, Chen YM, Wang W et al. (2020). A new coronavirus associated with human respiratory disease in China. Nature 579 (7798): 265-269. doi: 10.1038/s41586-020- 2008-3
  • Wu YC, Chen CS, Chan YJ (2020). The outbreak of COVID-19: An overview. Journal of the Chinese Medical Association 83 (3): 217-220. doi: 10.1097/JCMA.0000000000000270
  • Wu Y, Guo C, Tang L, Hong Z, Zhou J et al. (2020). Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterology and Hepatology 5 (5): 434-435. doi: 10.1016/ S2468-1253(20)30083-2
  • Xiao F, Tang M, Zheng X, Liu Y, Li X et al. (2020). Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 158 (6): 1831-1833.e3. doi: 10.1053/j.gastro.2020.02.055
  • Xu PP, Tian RH, Luo S, Zu ZY, Fan B et al. (2020). Risk factors for adverse clinical outcomes with COVID-19 in China: A multicenter, retrospective, observational study. Theranostics 10 (14): 6372-6383. doi: 10.7150/thno.46833
  • Zang R, Castro MFG, McCune BT, Zeng Q, Rothlauf PW et al. (2020). TMPRSS2 and TMPRSS4 mediate SARS-CoV-2 infection of human small intestinal enterocytes. Science Immunology 5 (47): eabc3582. doi: 10.1126/sciimmunol.abc3582
  • Zhang H, Kang Z, Gong H, Xu D, Wang J et al. (2020). Digestive system is a potential route of COVID-19: An analysis of singlecell coexpression pattern of key proteins in viral entry process. Gut 69: 1010-1018. doi: 10.1136/gutjnl-2020-320953
  • Zhang J-J, Dong X, Cao Y-Y, Yuan Y-D, Yang Y-B et al. (2020). Clinical characteristics of 140 patients infected with SARSCoV-2 in Wuhan, China. Allergy. doi: 10.1111/all.14238
  • Zhang T, Cui X, Zhao X, Wang J, Zheng J et al. (2020). Detectable SARS-CoV-2 viral RNA in feces of three children during recovery period of COVID-19 pneumonia. Journal of Medical Virology. doi: 10.1002/jmv.25795
  • Zhang Y, Chen C, Zhu S, Shu C, Wang D et al. (2020). Notes from the field isolation of 2019-nCoV from a stool specimen of a laboratory- confirmed case of the coronavirus disease 2019 ( COVID-19 ). China CDC Weekly 2 (8): 2019-2020. doi: 10.46234/ccdcw2020.033
  • Zheng M, Gao Y, Wang G, Song G, Liu S et al. (2020). Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cellular and Molecular Immunology 17: 533-535. doi: 10.1038/ s41423-020-0402-2
  • Zhu N, Zhang D, Wang W, Li X, Yang B et al. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine 382 (8): 727-733. doi: 10.1056/NEJMoa2001017
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

An insight into the epitope-based peptide vaccine design strategy and studies against COVID-19

Tülin ARASOĞLU, Burcu UÇAR, Emrah Şefik ABAMOR, Dilek TURGUT BALIK, Erennur UĞUREL, Pelin PELİT ARAYICI, Serap DERMAN, Tayfun ACAR, Murat TOPUZOĞULLARI

SARS-CoV-2 neutralizing antibody development strategies

Şaban TEKİN, Melis DENİZCİ ÖNCÜ, Hasan Ümit ÖZTÜRK, Filiz KAYA, Aylin ÖZDEMİR BAHADIR, Bertan Koray BALCIOĞLU, Müge SERHATLI, Fatıma YÜCEL, Hivda ÜLBEĞİ POLAT

Virtual drug repurposing study against SARS-CoV-2 TMPRSS2 target

Serdar DURDAĞI

Covid-19: current knowledge, disease potential, prevention and clinical advances

Nikhat IMAM, Aftab ALAM, Mohd Faizan SIDDIQUI, Md. Mushtaque, Rafat ALI, Romana ISHRAT

Integration of transcriptomic profile of SARS-CoV-2 infected normal human bronchial epithelial cells with metabolic and protein-protein interaction networks

Hamza Umut KARAKURT, Pınar PİR

Potentials of plant-based substance to inhabit and probable cure for the COVID-19

Ahmet ONAY, Israt JAHAN

Interaction of certain monoterpenoid hydrocarbons with the receptor binding domain of 2019 novel coronavirus (2019-nCoV), transmembrane serine protease 2 (TMPRSS2), cathepsin B, and cathepsin L (CatB/L) and their pharmacokinetic properties

Erman Salih İSTİFLİ, Bektaş TEPE, Cengiz SARIKÜRKCÜ, Arzuhan ŞIHOĞLU TEPE

Gut-lung axis and dysbiosis in COVID-19

Belma ASLIM, Büşra AKTAŞ

Mesenchymal stem cell derived extracellular vesicles: promising immunomodulators against autoimmune, autoinflammatory disorders and SARS-CoV-2 infection

İhsan GÜRSEL, Özlem BULUT

An updated analysis of variations in SARS-CoV-2 genome

Osman Mutluhan UĞUREL, Dilek TURGUT BALIK, Oğuz ATA