SARS-CoV-2 neutralizing antibody development strategies

SARS-CoV-2 neutralizing antibody development strategies

In December 2019 a novel coronavirus was detected in Wuhan City of Hubei Province-China. Owing to a high rate of transmission from human to human, the new virus called SARS-CoV-2 differed from others by its unexpectedly rapid spread. The World Health Organization (WHO) described the most recent coronavirus epidemic as a global pandemic in March 2020. The virus spread triggered a health crisis (the COVID-19 disease) within three months, with socioeconomic implications. No approved targetedtherapies are available for COVID-19, yet. However, it is foreseen that antibody-based treatments may provide an immediate cure for patients. Current neutralizing antibody development studies primarily target the S protein among the structural elements of SARSCoV-2, which mediates the cell entry of the virus through the angiotensin converting enzyme 2 (ACE2) receptor of host cells. This review aims to provide some of the neutralizing antibody development strategies for SARS-CoV-2 and in vitro and in vivo neutralization assays.

___

  • Ahmadzadeh V, Farajnia S, Feizi MA, Nejad RA (2014). Antibody humanization methods for development of therapeutic applications. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy 33 (2): 67-73.
  • Akamatsu Y, Pakabunto K, Xu Z, Zhang Y, Tsurushita N (2007). Whole IgG surface display on mammalian cells: application to isolation of neutralizing chicken monoclonal anti-IL-12 antibodies. Journal of Immunological Methods 327: 40-52.
  • Bahadir AO, Balcioglu BK, Uzyol KS, Hatipoglu I, Sogut I et al. (2011). Phage displayed HBV core antigen with immunogenic activity. Applied Biochemistry and Biotechnology 165 (7-8): 1437‐1447.
  • Barnard DL, Day CW, Bailey K, Heiner M, Montgomery R et al. (2006). Evaluation of immunomodulators, interferons and known in vitro SARS-coV inhibitors for inhibition of SARScoV replication in BALB/c mice. Antiviral Chemistry and Chemotherapy 17: 275-284.
  • BerryJ D, Jones S, Drebot MA, Andonov A, Sabara M et al. (2004). Development and characterisation of neutralising monoclonal antibody to the SARS-coronavirus. Journal of Virological Methods 120 (1): 87-96.
  • Bisht H, Roberts A, Vogel L, Bukreyev A, Collins PL et al. (2004). Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proceedings of the National Academy of Sciences of the United States of America 101: 6641-6646.
  • Casadevall A, Pirofski LA (2020). The convalescent sera option for containing COVID-19. Journal of Clinical Investigation 130 (4): 1545-1548.
  • Carmen S, Jermutus L (2002). Concepts in antibody phage display. Briefings in Functional Genomics and Proteomics 1 (2): 189‐203.
  • Chen L, Xiong J, Bao L, Shi Y (2020). Convalescent plasma as a potential therapy for COVID-19. The Lancet Infectious Diseases 20 (4): 398-400.
  • Chen Z, Zhang L, Qin C, Ba L, Yi CE et al. (2005). Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. Journal of Virology 79: 2678-2688.
  • Cheong WS, Leow CY, Majeed ABA, Leow CH (2020). Diagnostic and therapeutic potential of shark variable new antigen receptor (VNAR) single domain antibody. International Journal of Biological Macromolecules 147: 369‐375.
  • Davey RT Jr, Dodd L, Proschan MA, Neaton J, Nordwall JN et al. The PREVAIL II Writing Group, for the Multi-National PREVAIL II Study Team (2016). A randomized, controlled trial of ZMapp for Ebola virus infection. New England Journal of Medicine 375 (15): 1448-1456.
  • King DJ, Bowers PM, Kehry MR, Horlick RA (2014). Mammalian cell display and somatic hypermutation in vitro for human antibody discovery. Current Drug Discovery Technologies 11: 56-64.
  • Day CW, Baric R, Cai SX, Frieman M, Kumaki Y et al. (2009). A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology 395: 210-222.
  • Duan K, Liu B, Li C, Zhang H, Yu T et al. (2020). Effectiveness of convalescent plasma therapy in severe Covid-19 patients. Proceedings of the National Academy of Sciences 117 (17): 9490-9496.
  • Erdag B, Balcioglu KB, Kumbasar A, Celikbicak O, Zeder-Lutz G et al. (2007). Novel short peptides isolated from phage display library inhibit vascular endothelial growth factor activity. Molecular Biotechnology 35 (1): 51‐63.
  • Erdag B, Balcioglu BK, Bahadir AO, Serhatli M, Kacar O et al. (2011). Identification of novel neutralizing single-chain antibodies against vascular endothelial growth factor receptor 2. Biotechnology and Applied Biochemistry 58 (6): 412‐422.
  • Ertekin O, Guloglu FB, Pirincci S, Tuglu S, Akcael E et al. (2013). Antibody based systems for the determination of mycotoxins in food and feed. Current Opinion in Biotechnology 24 (Supplement 1): 23.
  • Folgori A, Tafi R, Meola A, Felici F, Galfré G et al. (1994). A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. The EMBO Journal 13 (9): 2236‐2243.
  • Fuentes M, Palomo JM, Mateo C, Venteo A, Sanz A et al. (2005). Optimization of the modification of carrier proteins with aminated haptens. Journal of Immunological Methods 307 (1- 2): 144-149.
  • Galfre G, Milstein C (1982). Preparation of monoclonal antibodies: strategies and procedures. Methods in Enzymology 73 (Part B): 3-46.
  • Glass WG, Subbarao K, Murphy B, Murphy PM (2004). Mechanisms of host defense following severe acute respiratory syndromecoronavirus (SARSCoV) pulmonary infection of mice. The Journal of Immunology 173: 4030-4039.
  • Gorny MK (2012). Human Hybridoma Technology. Antibody Technology Journal 2: 1-5.
  • Greenough TC, Carville A, Coderre J, Somasundaran M, Sullivan JL et al. (2005). Pneumonitis and multi-organ system disease in common marmosets (Callithrix jacchus) infected with the severe acute respiratory syndrome-associated coronavirus. American Journal of Pathology 167: 455-463.
  • Ho M, Nagata S, Pastan I (2006). Isolation of anti-CD22 Fv with high affinity by Fv display on human cells. Proceedings of the National Academy of Sciences 103 (25): 9637-9642.
  • Ho M, Pastan I (2009). Display and selection of scFv antibodies on HEK-293T cells. In: Aitken R (editor). Antibody Phage Display. Methods in Molecular Biology (Methods and Protocols), Vol. 562. Totowa, NJ, USA: Humana Press, pp. 99-113.
  • Hogan RJ, Gao G, Rowe T, Bell P, Flieder D et al. (2004). Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires Stat1. Journal of Virology 78: 11416-11421.
  • Huang J, Doria-Rose NA, Longo NS, Laub L, Lin C-L et al. (2013). Isolation of human monoclonal antibodies from peripheral blood B cells. Nature Protocols 8 (10): 1907-1915.
  • Iannolo G, Minenkova O, Petruzzelli R, Cesareni G (1995). Modifying filamentous phage capsid: limits in the size of the major capsid protein. Journal of Molecular Biology 248 (4): 835‐844.
  • Ju B, Zhang Q, Ge X, Wang R, Yu J et al. (2020). Potent human neutralizing antibodies elicited by SARS-CoV-2 infection. BioRxiv. doi: 10.1101/2020.03.21.990770
  • Klasse PJ (2014). Neutralization of virus iInfectivity by antibodies: old problems in new perspectives. Advances in Biology 2014: 157895.
  • Kim JH, Hong HJ (2012). Humanization by CDR grafting and specificity-determining residue grafting. Methods in Molecular Biology 907: 237-245.
  • Kowalski M, Guindon J, Brazas L, Moore C, Entwistle J et al. (2012). A phase II study of oportuzumab monatox: an immunotoxin therapy for patients with noninvasive urothelial carcinoma in situ previously treated with bacillus Calmette-Guerin. The Journal of Urology 188 (5): 1712-1718.
  • Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, Van Amerongen G et al. (2003). Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362: 263-270.
  • Lawler JV, Endy TP, Hensley LE, Garrison A, Fritz EA et al. (2006). Cynomolgus macaque as an animal model for severe acute respiratory syndrome. PLoS Medicine 3: e149.
  • Ledsgaard L, Kilstrup M, Karatt-Vellatt A, McCafferty J, Laustsen AH (2018). Basics of antibody phage display technology. Toxins 10 (6): 236.
  • Li H, Liu SM, Yu XH, Tang SL, Tang CK (2020). Coronavirus disease 2019 (COVID-19): current status and future perspectives. International Journal of Antimicrobial Agents 2020: 105951.
  • Li J, Sai M, Berger M, Chao Q, Davidson D et al. (2006). Human antibodies for immunotherapy development generated via a human B cell hybridoma technology. Proceedings of the National Academy of Sciences of the United States of America 103 (10): 3557-3562.
  • Li K, McCray PB Jr. (2020). Development of a mouse-adapted MERS coronavirus. Methods in Molecular Biology 2099: 161-171.
  • Lim CC, Woo PCY, Lim TS (2019). Development of a phage display panning strategy utilizing crude antigens: isolation of MERSCoV nucleoprotein human antibodies. Scientific Reports 9 (1): 6088.
  • Liu X, Gao F, Gou L, Chen Y, Gu Y et al. (2020). Neutralizing antibodies isolated by a site-directed screening have potent protection on SARS-CoV-2 infection. BioRxiv. doi: 10.1101/2020.05.03.074914
  • Luke T, Wu H, Zhao J, Channappanavar R, Coleman CM et al. (2016). Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo. Science Translational Medicine 8 (326): 326ra21.
  • Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF et al. (2003). Virology: SARS virus infection of cats and ferrets. Nature 425: 915.
  • McAuliffe J, Vogel L, Roberts A, Fahle G, Fischer S et al. (2004). Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys. Virology 330: 8-15.
  • McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348 (6301): 552‐554.
  • McCray PB Jr, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L et al. (2007). Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. Journal of Virology 81: 813-821.
  • Mimmi S, Maisano D, Quinto I, Iaccino E (2019). Phage display: an overview in context to drug discovery. Trends in Pharmacological Sciences 40 (2): 87‐91.
  • Nancy T, Janine T (2004). Bacteriophages. In: Nancy T, Janine T (editors). Fundamental bacterial genetics. Australia: Blackwell Science Ltd, pp. 105-125.
  • Omar N, Lim TS (2018). Construction of Naive and Immune Human Fab Phage-Display Library. In: Hust M, Lim T (editors). Phage Display. Methods in Molecular Biology, Vol. 1701. Totowa, NJ, USA: Humana Press, pp. 25‐44.
  • Kaye M, Druce J, Tran T, Kostecki R, Chibo D et al. (2006). SARSassociated coronavirus replication in cell lines. Emerging Infectious Diseases 12 (1): 128-133.
  • Qin C, Wang J, Wei Q, She M, Marasco WA et al. (2005). An animal model of SARS produced by infection of Macaca mulatta with SARS coronavirus. Journal of Pathology 206: 251-259.
  • Ratnam S, Gadag R, West R, Burris J, Oates E et al. (1995). Comparison of commercial enzyme immunoassay kits with plaque reduction neutralization test for detection of measles virus antibody. Journal of Clinical Microbiology 33 (4): 811- 815.
  • Roberts A, Paddock C, Vogel L, Butler E, Zaki S et al. (2005a). Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. Journal of Virology 79: 5833-5838.
  • Roberts A, Vogel L, Guarner J, Hayes N, Murphy B et al. (2005b.) Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. Journal of Virology 79: 503-511.
  • Roberts A, Deming D, Paddock CD, Cheng A, Yount B et al. (2007). A mouse adapted SARS-coronavirus causes disease and mortality in BALB/C mice. PLoS Pathogens 3: e5.
  • Roberts A, Lamirande EW, Vogel L, Jackson JP, Paddock CD et al. (2008). Animal models and vaccines for SARS-CoV infection. Virus Research 133: 20-32.
  • Beerli BB, Bauer M, Buser RB, Gwerder M, Muntwiler S et al. (2008). Isolation of human monoclonal antibodies by mammalian cell display. Proceedings of the National Academy of Sciences of the United States of America 105 (38): 14336-14341.
  • Rowe T, Gao G, Hogan RJ, Crystal RG, Voss TG et al. (2004). Macaque model for severe acute respiratory syndrome. Journal of Virology 78: 11401-11404.
  • Safdari Y, Farajnia S, Asgharzadeh M, Khalili M (2013). Antibody humanization methods - a review and update. Biotechnology and Genetic Engineering Reviews 29: 175-186.
  • Shanehbandi D , Majidi J , Kazemi T , Baradaran B , AghebatiMaleki L (2017). Cloning and molecular characterization of the cDNAs encoding the variable regions of an anti-CD20 monoclonal antibody. Human Antibodies 26 (1): 1-6.
  • Shen C, Wang Z, Zhao F, Yang Y, Li J et al. (2015). Treatment of critically ill patients with COVID-19 with convalescent plasma. JAMA 323 (16): 1582-1589.
  • Shernan SK, Fitch JC, Nussmeier NA, Chen JC, Rollins SA et al. (2004). Impact of pexelizumab, an anti-C5 complement antibody, on total mortality and adverse cardiovascular outcomes in cardiac surgical patients undergoing cardiopulmonary bypass. The Annals of Thoracic Surgery 77 (3): 942-949.
  • Schmidt NJ, Dennis J, Lennette EH (1976). Plaque reduction neutralization test for human cytomegalovirus based upon enhanced uptake of neutral red by virus-infected cells. Journal of Clinical Microbiology 4 (1): 61-66.
  • Shukra AM, Sridevi NV, Dev C, Kapil M (2014). Production of recombinant antibodies using bacteriophages. European Journal of Microbiology and Immunology 4: 91-98 .
  • Scott AS, Crowe JE Jr (2015). Use of human hybridoma technology to isolate human monoclonal antibodies. Microbiology Spectrum 3 (1): AID-0027-2014.
  • Siu YL, Teoh KT, Lo J, Chan CM, Kien F et al. (2008). The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. Journal of Virology 82 (22): 11318-11330.
  • Stephen JT, Nisalak A, Anderson KB, Libraty DH, Kalayanarooj S et al. (2009). Dengue plaque reduction neutralization test (PRNT) in primary and secondary dengue virus infections: how alterations in assay conditions impact performance. The American Journal of Tropical Medicine and Hygiene 81 (5): 825-833.
  • Smith GP (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1228 (4705): 1315‐1317.
  • Smith GP, Petrenko VA (1997). Phage Display. Chemical Reviews 97 (2): 391‐410.
  • Subbarao K, McAuliffe J, Vogel L, Fahle G, Fischer S et al. (2004). Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. Journal of Virology 78: 3572-3577.
  • Ter Meulen J, Bakker AB, Van den Brink EN, Weverling GJ, Martina BE et al. (2004). Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet 363: 2139- 2141.
  • Traggiai E, Becker S, Subbaro K, Kolesnikova L, Uematsu Y et al. (2004). An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nature Medicine 10 (8): 871-875.
  • Waldmann H (2014). Human Monoclonal Antibodies: The Residual Challenge of Antibody Immunogenicity. In: Steinitz M (editor). Human Monoclonal Antibodies, Methods and Protocols. Methods in Molecular Biology, Vol. 1060. Totowa, NJ, USA: Humana Press, pp. 1-7.
  • Wan Y, Shang J, Sun S, Tai W, Chen J et al. (2020). Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. Journal of Virology 94 (5). doi: 10.1128/ JVI.02015-19
  • Wang C, Li W, Drabek D, Okba NMA, Haperen R et al. (2020). A human monoclonal antibody blocking SARS-CoV-2 infection. Nature Communications 11: 2251.
  • Widjaja I, Wang C, Van Haperen R, Gutiérrez-Álvarez J, Van Dieren B et al. (2019). Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein. Emerging Microbes and Infections 8 (1): 516-530.
  • Wilson PC, Andrews SF (2012). Tools to therapeutically harness the human antibody response. Nature Reviews Immunology 12: 709-719.
  • Wong SK, Li W, Moore MJ, Choe H, Farzan M (2004). A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. Journal of Biological Chemistry 279: 3197-3201.
  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL et al. (2020a). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 13 (367): 1260-1263.
  • Wrapp D, De Vlieger D, Corbett KS, Torres GM, Breedam WV et al. (2020). Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell 181: 1-12.
  • Wu F, Wang A, Liu M, Wang Q, Chen J et al. (2020). Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. MedRxiv. doi: 10.1101/2020.03.30.20047365
  • Wu Y, Li C, Xia S, Tian X, Kong Y et al. (2020). Identification of human single-domain antibodies against SARS-CoV-2. Cell Host and Microbe 27: 1-8.
  • Xiong H, Wu J, Cao J, Yang R, Ma J et al. (2020). Robust neutralization assay based on SARS-CoV-2 S-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressed BHK21 cells. BioRxiv (preprint). doi: 10.1101/2020.04.08.026948
  • Zeng X, Lingfang Li, Jing Lin, Xinlei Li, Bin Liu et al. (2020). Isolation of a human monoclonal antibody specific for the receptorbinding domain of SARS-CoV-2 using a competitive phage biopanning strategy. Antibody Therapeutics 3 (2): 95-100.
  • Zhao G, He L, Sun S, Qiu H, Tai W et al. (2018). A Novel Nanobody Targeting Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Receptor-Binding Domain Has Potent CrossNeutralizing Activity and Protective Efficacy against MERSCoV. Journal of Virology 92 (18). doi: 10.1128/JVI.00837-18
  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature: 579 (7798): 270-273.
  • Zhou C, Jacobsen FW, Cai L, Chen Q, Shen D (2010). Development of a novel mammalian cell surface antibody display platform. mAbs 2 (5): 508-518.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Biosafety and biosecurity approaches to restrain/contain and counter SARS-CoV-2/ COVID-19 pandemic: a rapid-review

Muhammad KHAN, Haroon, Khan SHARUN, Irfan AHMED, Ruchi TIWARI, Alfonso J. RODRIGUEZ MORALES, Jin HUI, Fazal Mehmood KHAN, Taha Hussien MUSA, Tauseef AHMAD, D. Katterine BONILLA ALDANA, Kuldeep DHAMA

Covid-19: current knowledge, disease potential, prevention and clinical advances

Nikhat IMAM, Aftab ALAM, Mohd Faizan SIDDIQUI, Md. Mushtaque, Rafat ALI, Romana ISHRAT

Phylogenetic analysis of SARS-CoV-2 genomes in Turkey

Ogün ADEBALİ, Aylin BİRCAN, Defne ÇİRCİ, Burak İŞLEK, Zeynep KILINÇ, Berkay SELÇUK, Berk TURHAN

SARS-CoV-2 neutralizing antibody development strategies

Şaban TEKİN, Melis DENİZCİ ÖNCÜ, Hasan Ümit ÖZTÜRK, Filiz KAYA, Aylin ÖZDEMİR BAHADIR, Bertan Koray BALCIOĞLU, Müge SERHATLI, Fatıma YÜCEL, Hivda ÜLBEĞİ POLAT

Gut-lung axis and dysbiosis in COVID-19

Belma ASLIM, Büşra AKTAŞ

Potentials of plant-based substance to inhabit and probable cure for the COVID-19

Ahmet ONAY, Israt JAHAN

Interaction of certain monoterpenoid hydrocarbons with the receptor binding domain of 2019 novel coronavirus (2019-nCoV), transmembrane serine protease 2 (TMPRSS2), cathepsin B, and cathepsin L (CatB/L) and their pharmacokinetic properties

Erman Salih İSTİFLİ, Bektaş TEPE, Cengiz SARIKÜRKCÜ, Arzuhan ŞIHOĞLU TEPE

Mesenchymal stem cell derived extracellular vesicles: promising immunomodulators against autoimmune, autoinflammatory disorders and SARS-CoV-2 infection

İhsan GÜRSEL, Özlem BULUT

Virtual drug repurposing study against SARS-CoV-2 TMPRSS2 target

Serdar DURDAĞI

An updated analysis of variations in SARS-CoV-2 genome

Osman Mutluhan UĞUREL, Dilek TURGUT BALIK, Oğuz ATA