An insight into the epitope-based peptide vaccine design strategy and studies against COVID-19

An insight into the epitope-based peptide vaccine design strategy and studies against COVID-19

SARS-CoV-2 is a new member of the coronavirus family and caused the pandemic of coronavirus disease 2019 (COVID-19) in 2020. It is crucial to design and produce an effective vaccine for the prevention of rapid transmission and possible deaths wcaused by the disease. Although intensive work and research are being carried out all over the world to develop a vaccine, an effective and approved formulation that can prevent the infection and limit the outbreak has not been announced yet. Among all types of vaccines, epitope-based peptide vaccines outshine with their low-cost production, easy modification in the structure, and safety. In this review, vaccine studies against COVID-19 have been summarized and detailed information about the epitope-based peptide vaccines against COVID-19 has been provided. We have not only compared the peptide vaccine with other types of vaccines but also presented comprehensive literature information about development steps for an effective and protective formulation to give an insight into on-going peptide vaccine studies against SARS-CoV-2.

___

  • Abdelmageed MI, Abdelmoneim AH, Mustafa MI, Elfadol NM, Murshed NS et al. (2020). Design of a multiepitope-based peptide vaccine against the E protein of human COVID-19: An immunoinformatics approach. BioMed Research International doi: 10.1101/2020.02.04.934232
  • Acar T, Arayıcı PP, Ucar B, Karahan M, Mustafaeva Z (2019). Synthesis, characterization and lipophilicity study of Brucella abortus’ immunogenic peptide sequence that can be used in the future vaccination studies. International Journal of Peptide Research and Therapeutics 25: 911-918.
  • Ahmed SF, Quadeer AA, McKay MR (2020). Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 12: 254.
  • Ali M, Pandey RK, Khatoon N, Narula A, Mishra A et al. (2017). Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Scientific Reports 7: 1-13.
  • Almofti YA, Abd-elrahman KA, Gassmallah SAE, Salih MA (2018). Multi epitopes vaccine prediction against severe acute respiratory syndrome (SARS) coronavirus using immunoinformatics approaches. American Journal of Microbiological Research 6: 94-114.
  • Amanat F, Krammer F (2020). SARS-CoV-2 vaccines: Status report. Immunity 52 (4): 583-589. doi: 10.1016/j.immuni.2020.03.007
  • Bahrami AA, Payandeh Z, Khalili S, Zakeri A, Bandehpour M (2019). Immunoinformatics: In silico approaches and computational design of a multi-epitope, immunogenic protein. International Reviews of Immunology 38: 307-322.
  • Baruah V, Bose S (2020). Immunoinformatics‐aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019‐ nCoV. Journal of Medical Virology 92: 495-500.
  • Behrendt R, White P, Offer J (2016). Advances in Fmoc solid-phase peptide synthesis. Journal of Peptide Science 22: 4-27.
  • Bhattacharya M, Ranjan Sharma A, Patra P, Ghosh P, Sharma G et al. (2020). Development of epitope-based peptide vaccine against novel Coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. Journal of Medical Virology 92 (6). doi: 10.1002/ jmv.25736
  • Biswas S, Chatterjee S, Dey T, Dey S, Manna S et al. (2020). In silico approach for peptide vaccine design for CoVID 19. MOL2NET 2020, International Conference on Multidisciplinary Sciences, 6th edition session, USINEWS-04: US-IN-EU Worldwide Science Workshop Series, UMN, Duluth, USA, 2020.
  • Bojin F, Gavriliuc O, Margineanu M-B, Paunescu V (2020). Design of an epitope-based synthetic long peptide vaccine to counteract the novel China Coronavirus (2019-nCoV). Preprints.
  • Brian D, Baric R (2005). Coronavirus genome structure and replication. In: Enjuanes L (editor). Coronavirus Replication and Reverse Genetics. Springer, pp. 1-30.
  • Bui H-H, Sidney J, Li W, Fusseder N, Sette A (2007). Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics 8: 361. doi: 10.1186/1471-2105-8-361
  • Callaway E (2020). The race for coronavirus vaccines: a graphical guide. Nature 580: 576-577. doi: 10.1038/d41586-020-01221-y
  • Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R (2020). Features, evaluation and treatment coronavirus (COVID-19). In: Statpearls [internet]. StatPearls Publishing
  • Chan W, White P (1999). Fmoc Solid Phase Peptide Synthesis: A Practical Approach. Oxford, UK: Oxford University Press.
  • Channappanavar R, Zhao J, Perlman S (2014). T cell-mediated immune response to respiratory coronaviruses. Immunologic Research 59 (1): 118-128. doi: 10.1007/s12026-014-8534-z
  • Chen W-H, Strych U, Hotez PJ, Bottazzi ME (2020). The SARSCoV-2 vaccine pipeline: an overview. Current Tropical Medicine Reports 3: 1-4. doi: 10.1007/s40475-020-00201-6
  • Cho H, Excler J-L, Kim JH, Yoon I-K (2018). Development of Middle East respiratory syndrome coronavirus vaccines–advances and challenges. Human Vaccines & Immunotherapeutics 14 (2): 304-313. doi: 10.1080/21645515.2017.1389362
  • Enjuanes L, Smerdou C, Castilla J, Antón IM, Torres JM et al. (1995). Development of protection against coronavirus induced diseases. In: Talbot PJ, Levy GA (editors). Corona-and Related Viruses. Boston, MA, USA: Springer, pp. 197-211.
  • Fast E, Chen B (2020). Potential T-cell and B-cell epitopes of 2019- nCoV. bioRxiv. doi: 10.1101/2020.02.19.955484
  • Feng Y, Qiu M, Zou S, Li Y, Luo K et al. (2020). Multi-epitope vaccine design using an immunoinformatics approach for 2019 novel coronavirus in China (SARS-CoV-2). bioRxiv. doi: 10.1101/2020.03.03.962332
  • Gao Q, Bao L, Mao H, Wang L, Xu K et al. (2020). Development of an inactivated vaccine candidate for SARS-CoV-2. Science. doi: 10.1126/science.abc1932
  • Glenny A, Pope C, Waddington H, Wallace U (1926). Immunological notes. xvii–xxiv. The Journal of Pathology and Bacteriology 29: 31-40. doi: 10.1002/path.1700290106
  • Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B et al. (2020). A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARSCoV-2. Cell Host & Microbe 27 (4): 671-680. doi: 10.1016/j. chom.2020.03.002
  • Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM et al. (1920). Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. doi: 10.1016/j.cell.2020.05.015
  • Guo Y-R, Cao Q-D, Hong Z-S, Tan Y-Y, Chen S-D et al. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research 7 (1):1-10. doi: 10.1186/s40779- 020-00240-0
  • Guy B (2007). The perfect mix: recent progress in adjuvant research. Nature Reviews Microbiology 5 (7): 505-517. doi: 10.1038/ nrmicro1681
  • Huang C, Wang Y, Li X, Ren L, Zhao J et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395 (10223): 497-506. doi: 10.1016/S0140- 6736(20)30183-5
  • Jensen KJ, Shelton PT, Pedersen SL (2013) Peptide Synthesis and Applications. New York, USA: Springer.
  • Jespersen MC, Peters B, Nielsen M, Marcatili P (2017). BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research 3 (45): W24-W29. doi: 10.1093/nar/gkx346
  • Joshi A, Joshi BC, Mannan MA-u, Kaushik V (2020). Epitope based vaccine prediction for SARS-COV-2 by deploying immunoinformatics approach. Informatics in Medicine Unlocked 19. doi: 10.1016/j.imu.2020.100338
  • Kalita P, Padhi A, Zhang KY, Tripathi T (2020). Design of a peptidebased subunit vaccine against novel coronavirus SARSCoV-2. Microbial Pathogenesis 145: 104236. doi: 10.1016/j. micpath.2020.104236
  • Kam YW, Kien F, Roberts A, Cheung YC, Lamirande EW et al. (2007). Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro. Vaccine 25 (4): 729-740. doi: 10.1016/j.vaccine.2006.08.011
  • Khan M, Khan S, Ali A, Akbar H, Sayaf AM et al. (2019). Immunoinformatics approaches to explore Helicobacter Pylori proteome (Virulence Factors) to design B and T cell multi-epitope subunit vaccine. Scientific Reports 9: 1-13. doi: 10.1038/s41598-019-49354-z
  • Khong H, Overwijk WW (2016). Adjuvants for peptide-based cancer vaccines. Journal for immunotherapy of Cancer 4: 56. doi: 10.1186/s40425-016-0160-y
  • Kibria K, Ullah H, Miah M (2020). The multi-epitope vaccine prediction to combat Pandemic SARS-CoV-2, an immunoinformatic approach.
  • Kin N, Miszczak F, Lin W, Gouilh MA, Vabret A (2015). Genomic analysis of 15 human coronaviruses OC43 (HCoV-OC43s) circulating in France from 2001 to 2013 reveals a high intraspecific diversity with new recombinant genotypes. Viruses 7 (5): 2358-2377. doi: 10.3390/v7052358
  • King AM, Lefkowitz E, Adams MJ, Carstens EB (2011) Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Nucleic Acids Research 4: D708-717. doi: 10.1093/nar/gkx932
  • Kiyotani K, Toyoshima Y, Nemoto K, Nakamura Y (2020). Bioinformatic prediction of potential T cell epitopes for SARSCov-2. Journal of Human Genetics 65: 596-575. doi: 10.1038/ s10038-020-0771-5
  • Kolaskar A, Tongaonkar PC (1990). A semi‐empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters 276 (1-2): 172-174. doi: 10.1016/0014-5793(90)80535-q
  • Kumar S, Nyodu R, Maurya VK, Saxena SK (2020) Host Immune Response and Immunobiology of Human SARS-CoV-2 Infection. In: Saxena SK (editor) Coronavirus Disease 2019 (COVID-19) Medical Virology: From Pathogenesis to Disease Control. Singapur: Springer. pp 43-53.
  • Le TT, Andreadakis Z, Kumar A, Roman RG, Tollefsen S et al. (2020). The COVID-19 vaccine development landscape. Nature Reviews Drug Discovery 19: 305-306. doi: 10.1038/ d41573-020-00073-5
  • Lee CH-J, Koohy H (2020). In silico identification of vaccine targets for 2019-nCoV. F1000Research 9: 145. doi: 10.12688/ f1000research.22507.2
  • Li L, Sun T, He Y, Li W, Fan Y et al. (2020). Epitope-based peptide vaccines predicted against novel coronavirus disease caused by SARS-CoV-2. bioRxiv. doi: 10.1101/2020.02.25.965434
  • Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK (2014). Peptide vaccine: progress and challenges. Vaccines 2 (3):515- 536. doi: 10.3390/vaccines2030515
  • Li X, Geng M, Peng Y, Meng L, Lu S (2020). Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis 10 (2): 102-108. doi: 10.1016/j. jpha.2020.03.001
  • Lixin L, Zhijia L, Haolin C, Hong L, Qiang G et al. (2020). A translatable subunit nanovaccine for COVID-19. chemRxiv. Lon JR, Bai Y, Zhong B, Cai F, Du H (2020). Prediction and Evolution of B Cell Epitopes of Surface Protein in SARS-CoV-2. bioRxiv. doi: 10.1101/2020.04.03.022723
  • Lu S (2020). Timely development of vaccines against SARSCoV-2. Emerging Microbes & Infections 9 (1): 542-544. doi: 10.1080/22221751.2020.1737580
  • Ma C, Su S, Wang J, Wei L, Du L et al. (2020). From SARS-CoV to SARS-CoV-2: safety and broad-spectrum are important for coronavirus vaccine development. Microbes and Infection. doi: 10.1016/j.micinf.2020.05.004
  • Magnusson SE, Altenburg AF, Bengtsson KL, Bosman F, de Vries RD et al. (2018). Matrix-M™ adjuvant enhances immunogenicity of both protein-and modified vaccinia virus Ankara-based influenza vaccines in mice. Immunologic Research 66 (2): 224- 233. doi: 10.1007/s12026-018-8991-x
  • Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS et al. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet 395 (10229): 1033-1034. doi: 10.1016/S0140-6736(20)30628-0
  • Merrifield RB (1963). Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society 85 (14): 2149-2154. doi: 10.1021/ja00897a025
  • Moisa AA, Kolesanova EF (2012). Synthetic peptide vaccines. In: Roy PK (editor). Insight and Control of Infectious Disease in Global Scenario. pp. 201-228.
  • Morel S, Didierlaurent A, Bourguignon P, Delhaye S, Baras B et al. (2011). Adjuvant System AS03 containing α-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 29 (13): 2461-2473. doi: 10.1016/j. vaccine.2011.01.011
  • Mozdzanowska K, Feng J, Eid M, Kragol G, Cudic M et al. (2003). Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine 21 (19-20): 2616-2626. doi: 10.1016/s0264- 410x(03)00040-9
  • Navas-Martin S, Weiss SR (2003). SARS: lessons learned from other coronaviruses. Viral Immunology 16 (4): 461-474. doi: 10.1089/088282403771926292
  • Nomura R, Kiyota A, Suzaki E, Kataoka K, Ohe Y et al. T (2004). Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae. Journal of Virology 78 (16): 8701-8708. doi: 10.1128/JVI.78.16.8701-8708.2004
  • Oany AR, Emran A-A, Jyoti TP (2014). Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach. Drug Design, Development and Therapy 8: 1139-1149. doi: 10.2147/DDDT.S67861
  • Ohno S, Kohyama S, Taneichi M, Moriya O, Hayashi H et al. (2009). Synthetic peptides coupled to the surface of liposomes effectively induce SARS coronavirus-specific cytotoxic T lymphocytes and viral clearance in HLA-A*0201 transgenic mice. Vaccine 27 (29): 3912-3920. doi: 10.1016/j.vaccine.2009.04.001
  • Ozkan K (2020). How close are we to a Covid-19 vaccine. Journal of Pure and Applied Microbiology 14.
  • Pant S, Singh M, Ravichandiran V, Murty U, Srivastava HK (2020). Peptide-like and small-molecule inhibitors against Covid-19. Journal of Biomolecular Structure and Dynamics 1-15. doi: 10.1080/07391102.2020.1757510
  • Parvizpour S, Pourseif MM, Razmara J, Rafi MA, Omidi Y (2020). Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches. Drug Discovery Today S1359- 6446(20)30113-6. doi: 10.1016/j.drudis.2020.03.006
  • Petrovsky N, Aguilar JC (2004). Vaccine adjuvants: current state and future trends. Immunology and Cell Biology 82 (5): 488-496. doi: 10.1111/j.0818-9641.2004.01272.x
  • Pourseif MM, Yousefpour M, Aminianfar M, Moghaddam G, Nematollahi A (2019). A multi-method and structure-based in silico vaccine designing against Echinococcus granulosus through investigating enolase protein. BioImpacts 9 (3): 131- 144. doi: 10.15171/bi.2019.18
  • Powell BS, Andrianov AK, Fusco PC (2015). Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clinical and Experimental Vaccine Research 4 (1): 23-45. doi: 10.7774/cevr.2015.4.1.23
  • Rauch S, Jasny E, Schmidt KE, Petsch B (2018). New vaccine technologies to combat outbreak situations. Frontiers in Immunology 9: 1963. doi: 10.3389/fimmu.2018.01963
  • Ravichandran S, Coyle EM, Klenow L, Tang J, Grubbs G et al. (2020). Antibody repertoire induced by SARS-CoV-2 spike protein immunogens. bioRxiv. doi: 10.1101/2020.05.12.091918
  • Reed SG, Bertholet S, Coler RN, Friede M (2009). New horizons in adjuvants for vaccine development. Trends in Immunology 30 (1): 23-32. doi: 10.1016/j.it.2008.09.006
  • Rogers TF, Zhao F, Huang D, Beutler N, Burns A et al. (2020). Rapid isolation of potent SARS-CoV-2 neutralizing antibodies and protection in a small animal model. bioRxiv. doi: 10.1101/2020.05.11.088674
  • Roper RL, Rehm KE (2009). SARS vaccines: where are we? Expert Review of Vaccines 8 (7): 887-898. doi: 10.1586/erv.09.43
  • Saif LJ (2020). Vaccines for COVID-19: perspectives, prospects, and challenges based on candidate SARS, MERS, and animal coronavirus vaccines. European Medical Journal. doi: 10.33590/emj/200324
  • Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA (2017). Fundamentals and methods for T- and B-cell epitope prediction. Journal of Immunology Research 2017:2680160. doi: 10.1155/2017/2680160
  • Sesardic D (1993). Synthetic peptide vaccines. Journal of Medical Microbiology 39: 241-242.
  • Shang W, Yang Y, Rao Y, Rao X (2020). The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. npj Vaccines 5: Article number: 18.
  • Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R (2020). COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research 24: 91- 98. doi: 10.1016/j.jare.2020.03.005
  • Shi J, Zhang J, Li S, Sun J, Teng Y et al. (2015). Epitope-based vaccine target screening against highly pathogenic MERS-CoV: an in silico approach applied to emerging infectious diseases. PloS one 10 (12): e0144475. doi: 10.1371/journal.pone.0144475
  • Sobolev BN, Olenina LV, Kolesanova EF, Poroikov VV, Archakov AI (2005). Computer design of vaccines: approaches, software tools and informational resources. Current Computer-Aided Drug Design 1:207-222.
  • Stawikowski M, Fields GB (2012). Introduction to peptide synthesis. Current Protocols in Protein Science 69 (1). doi: 10.1002/0471140864.ps1801s69
  • Swee LK, Guimaraes CP, Sehrawat S, Spooner E, Barrasa MI et al. (2013). Sortase-mediated modification of αDEC205 affords optimization of antigen presentation and immunization against a set of viral epitopes. Proceedings of the National Academy of Sciences 110 (4): 1428-1433. doi: 10.1073/pnas.1214994110
  • Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S (2020). Coronavirus membrane fusion mechanism offers as a potential target for antiviral development. Antiviral Research 178: 104792. doi: 10.1016/j.antiviral.2020.104792
  • Thiel V, Weber F (2008). Interferon and cytokine responses to SARScoronavirus infection. Cytokine & Growth factor Reviews 19 (2): 121-132. doi: 10.1016/j.cytogfr.2008.01.001
  • Tomar N, De RK (2010). Immunoinformatics: an integrated scenario. Immunology 131 (2): 153-168. doi: 10.1111/j.1365- 2567.2010.03330.x
  • Tomar N, De RK (2014). Immunoinformatics: a brief review. In: De RK, Tomar N (editors) Immunoinformatics. Springer, pp 23- 55.
  • Tseng C-T, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T et al. (2012). Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PloS one 7 (4): e35421. doi: 10.1371/journal. pone.0035421
  • Ucar B, Acar T, Arayici PP, Sen M, Derman S et al. (2019). Synthesis and applications of synthetic peptides. In: Varkey JT (editor) Peptide Synthesis. IntechOpen.
  • van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham J et al. (2020). ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv. doi: 10.1101/2020.05.13.093195
  • Veugelers R, Zachmann G (2020). Racing against COVID-19: a vaccines strategy for Europe. Bruegel Policy Contribution.
  • Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S et al. (2019). The immune epitope database (IEDB): 2018 update. Nucleic Acids Research 47 (D1): D339-D343. doi: 10.1093/nar/gky1006
  • Wang N, Wei C, Zhang Z, Liu T, Wang T (2020). Aluminum nanoparticles acting as a pulmonary vaccine adjuvantdDelivery system (VADS) able to safely elicit robust systemic and mucosal immunity. Journal of Inorganic and Organometallic Polymers and Materials. doi: 10.1007/s10904-020-01572-z
  • Wang Y-D, Sin W-YF, Xu G-B, Yang H-H, Wong T-Y et al. (2004). T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recover from SARS. Journal of Virology 78 (11): 5612-5618. doi: 10.1128/JVI.78.11.5612- 5618.2004
  • Wu SC (2020). Progress and concept for COVID‐19 vaccine development. Biotechnology Journal. doi: 10.1002/ biot.202000147
  • Yang H, Kim DS (2015) Peptide immunotherapy in vaccine development: from epitope to adjuvant. Advances in Protein Chemistry and Structural Biology 99: 1-14. doi: 10.1016/ bs.apcsb.2015.03.001
  • Ying L, Xu S, Yang RF, Li YX, Ji YY et al. (2003). Identification of an epitope of SARS-coronavirus nucleocapsid protein. Cell Research 13 (3): 141-145. doi: 10.1038/sj.cr.7290158
  • Yong CY, Ong HK, Yeap SK, Ho KL, Tan WS (2019). Recent Advances in the Vaccine Development Against Middle East Respiratory Syndrome-Coronavirus. Frontiers in Microbiology 10: 1781. doi: 10.3389/fmicb.2019.01781
  • Yu J, Tostanoski LH, Peter L, Mercado NB, McMahan K et al. (2020). DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science. doi: 10.1126/science.abc6284
  • Zhang G, Pomplun S, Loftis AR, Loas A, Pentelute BL (2020). The first-in-class peptide binder to the SARS-CoV-2 spike protein. bioRxiv. doi: 10.1101/2020.03.19.999318
  • Zhang J, Zeng H, Gu J, Li H, Zheng L et al. (2020). Progress and prospects on vaccine development against SARS-CoV-2. Vaccines 8 (2): 153. doi: 10.3390/vaccines8020153
  • Zhang N, Li C, Hu Y, Li K, Liang J et al. (2020). Current development of COVID-19 diagnostics, vaccines and therapeutics. Microbes and Infection. doi: 10.1016/j.micinf.2020.05.001
  • Zhang X, Cai H, Hu J, Lian J, Gu J et al. (2020). Epidemiological, clinical characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings. International Journal of Infectious Diseases 94: 81-87. doi: 10.1016/j.ijid.2020.03.040
  • Zhao G, Lin Y, Du L, Guan J, Sun S et al. (2010). An M2e-based multiple antigenic peptide vaccine protects mice from lethal challenge with divergent H5N1 influenza viruses. Virology Journal 7: 9. doi: 10.1186/1743-422X-7-9
  • Zhao K, Wang H, Wu C (2011). The immune responses of HLA-A*0201 restricted SARS-CoV S peptide-specific CD8+ T cells are augmented in varying degrees by CpG ODN, PolyI:C and R848. Vaccine 29 (38): 6670-6678. doi: 10.1016/j. vaccine.2011.06.100
  • Zhou G, Zhao Q (2020). Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. International Journal of Biological Sciences 16: 1718-1723. doi: 10.7150/ijbs.45123
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Potentials of plant-based substance to inhabit and probable cure for the COVID-19

Ahmet ONAY, Israt JAHAN

Gut-lung axis and dysbiosis in COVID-19

Belma ASLIM, Büşra AKTAŞ

An insight into the epitope-based peptide vaccine design strategy and studies against COVID-19

Tülin ARASOĞLU, Burcu UÇAR, Emrah Şefik ABAMOR, Dilek TURGUT BALIK, Erennur UĞUREL, Pelin PELİT ARAYICI, Serap DERMAN, Tayfun ACAR, Murat TOPUZOĞULLARI

An updated analysis of variations in SARS-CoV-2 genome

Osman Mutluhan UĞUREL, Dilek TURGUT BALIK, Oğuz ATA

Integration of transcriptomic profile of SARS-CoV-2 infected normal human bronchial epithelial cells with metabolic and protein-protein interaction networks

Hamza Umut KARAKURT, Pınar PİR

SARS-CoV-2 neutralizing antibody development strategies

Şaban TEKİN, Melis DENİZCİ ÖNCÜ, Hasan Ümit ÖZTÜRK, Filiz KAYA, Aylin ÖZDEMİR BAHADIR, Bertan Koray BALCIOĞLU, Müge SERHATLI, Fatıma YÜCEL, Hivda ÜLBEĞİ POLAT

Interaction of certain monoterpenoid hydrocarbons with the receptor binding domain of 2019 novel coronavirus (2019-nCoV), transmembrane serine protease 2 (TMPRSS2), cathepsin B, and cathepsin L (CatB/L) and their pharmacokinetic properties

Erman Salih İSTİFLİ, Bektaş TEPE, Cengiz SARIKÜRKCÜ, Arzuhan ŞIHOĞLU TEPE

Mesenchymal stem cell derived extracellular vesicles: promising immunomodulators against autoimmune, autoinflammatory disorders and SARS-CoV-2 infection

İhsan GÜRSEL, Özlem BULUT

SARS-CoV-2 isolation and propagation from Turkish COVID-19 patients

Ercüment OVALI, Merve AÇIKEL ELMAS, Serap ARBAK, Cihan TAŞTAN, Derya DİLEK KANÇAĞI, Bulut YURTSEVER, Selen ABANUZ, Utku SEYİS, Selçuk BİRDOĞAN, Ayşe Sesin KOCAGÖZ, Koray YALÇIN, Gözde SIR KARAKUŞ, Mülazim YILDIRIM, Recai KUZAY, Ömer ELİBOL, Osman Uğur SEZERMAN, Sevda DEMİR

Phylogenetic analysis of SARS-CoV-2 genomes in Turkey

Ogün ADEBALİ, Aylin BİRCAN, Defne ÇİRCİ, Burak İŞLEK, Zeynep KILINÇ, Berkay SELÇUK, Berk TURHAN