Potentials of plant-based substance to inhabit and probable cure for the COVID-19

Potentials of plant-based substance to inhabit and probable cure for the COVID-19

COVID-19 has been the most devastating pandemic in human history. Despite the highest scientific efforts and investments, a reliable and certified medication has yet to be developed regarding to immune or cure this virus. However, while synthetic medications are gaining the focus of attentions, it appears from a significant number of recent studies that plant-based substances could also be potential candidates for developing effective and secure remedies against this novel disease. Citing such recent works, this review primarily demonstrates the antiviral potentials of medicinal plants for inhibiting human coronaviruses. It also shows the importance of antiviral plants substances, particularly in the development of a broad spectrum medication for coronaviruses including SARS-CoV-2 responsible for COVID-19.

___

  • Akram M, Tahir IM, Shah SMA, Mahmood Z, Altaf A et al. (2018). Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: a systematic review. Phytotherapy Research 32 (5): 811-822. doi:10.1002/ptr.6024
  • Andrighetti-Fröhner C, Sincero TCM, Da Silva AC, Savi LA, Gaido CM et al. (2005). Antiviral evaluation of plants from Brazilian Atlantic tropical forest. Fitoterapia 76 (3-4): 374-378. doi: 10.1016/j.fitote.2005.03.010
  • Arbab AH, Parvez MK, Al-Dosari MS, Al-Rehaily AJ (2017). In vitro evaluation of novel antiviral activities of 60 medicinal plants extracts against hepatitis B virus. Experimental and Therapeutic Medicine 14 (1): 626-634. doi: 10.3892/etm.2017.4530
  • Asres K, Bucar F (2005). Anti-HIV activity against immunodeficiency virus type 1 (HIV-I) and type II (HIV-II) of compounds isolated from the stem bark of Combretum molle. Ethiopian Medical Journal 43 (1): 15-20.
  • Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A (2020). Antiviral effect of phytochemicals from medicinal plants: applications and drug delivery strategies. Drug Delivery and Translational Research 10: 354-367. doi: 10.1007/s13346-019-00691-6
  • Chantrill BH, Coulthard CE, Dickinson L, Inkley GW, Morris W et al. (1952). The action of plant extracts on a bacteriophage of Pseudomonas pyocyanea and on influenza A virus. The Journal of General Microbiology 6(1-2): 74-84. doi: 10.1099/00221287- 6-1-2-74
  • Chen CJ, Michaelis M, Hsu HK, Tsai CC, Yang KD et al. (2008). Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. Journal of Ethnopharmacology 120 (1): 108-11. doi: 10.1016/j.jep.2008.07.048
  • Chen CN, Lin CPC, Huang KK, Chen WC, Hsieh HP et al. (2005). Inhibition of SARS-CoV 3C-like protease activity by Theaflavin-3, 30-digallate (TF3). Evidence-Based Complementary and Alternative Medicine 2 (2): 209-215. doi: 10.1093/ecam/neh081
  • Chen Z, Nakamura T (2004). Statistical evidence for the usefulness of Chinese medicine in the treatment of SARS. Phytotherapy Research 18 (7): 592-594. doi: 10.1002/ptr.1485
  • Cheng PW, Ng LT, Chiang LC, Lin CC (2006). Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clinical and Experimental Pharmacology & Physiology 33 (7): 612- 616. doi: 10.1111/j.1440-1681.2006.04415.x
  • Cho JK, Curtis-Long MJ, Lee KH, Kim DW, Ryu HW et al. (2013). Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorganic & Medicinal Chemistry 21 (11): 3051-3057. doi: 10.1016/j.bmc.2013.03.027
  • Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H et al. (2003). Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 361 (9374): 2045-2046. doi: 10.1016/S0140-6736(03)13615-X
  • De Clercq E (2019). New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chemistry–An Asian Journal 14 (22): 3962-3968. doi: 10.1002/asia.201900841
  • De Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE et al. (2011). Family Coronaviridae. In: King AM, Lefkowitz E, Adams MJ, Carstens EB (editors). Ninth Report of the International Committee on Taxonomy of Viruses. Oxford, UK: Elsevier, pp. 806-828. doi: 10.1016/B978-0-12-384684- 6.00068
  • Debiaggi M, Pagani L, Cereda PM, Landini P, Romero E (1988). Antiviral activity of Chamaecyparis lawsoniana extract: study with herpes simplex virus type 2. Microbiologica 11 (1): 55-61.
  • Deng YF, Aluko RE, Jin Q, Zhang Y, Yuan LJ (2012). Inhibitory activities of baicalin against renin and angiotensin-converting enzyme. Pharmaceutical Biology 50 (4): 401-406. doi: 10.3109/13880209.2011.608076
  • Devaux CA, Rolain J-M, Colson P, Raoult D (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International Society of Chemotherapy 12: 105938. doi: 10.1016/j.ijantimicag.2020.105938
  • Dhama K, Karthik K, Khandia R, Munjal A, Tiwari R et al. (2018). Medicinal and therapeutic potential of herbs and plant metabolites/extracts countering viral pathogens-current knowledge and future prospects. Current Drug Metabolism 19 (3): 236-263. doi: 10.2174/1389200219666180129145252
  • Fan Y, Zhao K, Shi ZL, Zhou P (2019). Bat coronaviruses in China. Viruses 11 (3): 210. doi: 10.3390/v11030210
  • Fehr AR, Perlman S (2015). Coronaviruses: an overview of their replication and pathogenesis. In: Maier HJ, Bickerton E, Britton P (editors). Coronaviruses. Methods in Molecular Biology, Vol. 1282. New York, NY, USA: Springer, pp. 1-23. doi: 10.1007/978-1-4939-2438-7_1
  • Fung KP, Leung PC, Tsui KW, Wan CC, Wong KB et al. (2011). Immunomodulatory activities of the herbal formula Kwan Du Bu Fei Dang in healthy subjects: a randomised, double-blind, placebo-controlled study. Hong Kong Medical Journal 17 (Supplement 2): 41-43.
  • Ge XY, Li JL, Yang XL, Chmura AA, Zhu G et al. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503 (7477): 535-538. doi: 10.1038/ nature12711
  • Ghildiyal R, Prakash V, Chaudhary VK, Gupta V, Gabrani R (2020). Phytochemicals as antiviral agents: recent updates. Plantderived Bioactives 12: 279-295. doi: 10.1007/978-981-15-1761- 7_12
  • Gong SJ, Su XJ, Yu HP, Li J, Qin YJ et al. (2008). A study on antiSARS-CoV 3CL protein of flavonoids from Litchi chinensis sonn core. Chinese Pharmacological Bulletin 24: 699-700.
  • Guo Y-R, Cao Q-D, Hong Z-S, Tan Y-Y, Chen, S-D (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak –an update on the status. Military Medical Research 7 (1): 11. doi: 10.1186/s40779-020- 00240-0
  • Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O (2014). TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. Journal of Virology 88 (2): 1293-1307. doi: 10.1128/JVI.02202-13
  • Hill KP (2020). Cannabinoids and the coronavirus. Cannabis and Cannabinoid Research 2020 April 28 [online ahead of print]. doi: 10.1089/can.2020.0035
  • Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY (2007). Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Research 74 (2): 92-101. doi: 10.1016/j.antiviral.2006.04.014
  • Ho YJ, Lu JW, Huang JL, Lai ZZ (2019). Palmatine inhibits Zika virus infection by disrupting virus binding, entry, and stability. Biochemical and Biophysical Research Communications 518 (4): 732-738. doi: 10.1016/j.bbrc.2019.08.120
  • Hoareau L, DaSilva EJ (1999). Medicinal plants: a re-emerging health aid. Electronic Journal of Biotechnology 2 (2): 56-70. doi: 10.2225/vol2-issue2-fulltext-2
  • Hsu CH, Hwang KC, Chao CL, Chang SG, Ho MS et al. (2006). Can herbal medicine assist against avian flu? Learning from the experience of using supplementary treatment with Chinese medicine on SARS or SARS-like infectious disease in 2003. Journal of Alternative and Complementary Medicine 12 (6): 505-506. doi: 10.1089/acm.2006.12.505
  • Huang KL, Lai YK, Lin CC, Chang JM (2006). Inhibition of hepatitis B virus production by Boehmeria nivea root extract in HepG2 2.2.15 cells. World Journal of Gastroenterology 12 (35): 5721- 5725. doi: 10.3748/wjg.v12.i35.5721
  • Jiang S, Hillyer C, Du L (2020). Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends in Immunology 41 (5): 355-359. doi: 10.1016/j.it.2020.04.008
  • Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S (2020). Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints 2020: 2020030226. doi: 10.20944/ preprints202003.0226.v1
  • Kim DE, Min JS, Jang MS, Lee JY, Shin YS et al. (2019). Natural Bisbenzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules 9 (11): 696. doi: 10.3390/biom9110696
  • Kim DW, Seo KH, Curtis-Long MJ, Oh KY, Oh JW et al. (2014). Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. Journal of Enzyme Inhibition and Medicinal Chemistry 29 (1): 59-63. doi: 10.3109/14756366.2012.753591
  • Kwon HJ, Ryu YB, Kim YM, Song N, Kim CY et al. (2013). In vitro antiviral activity of phlorotannins isolated from Ecklonia cava against porcine epidemic diarrhea coronavirus infection and hemagglutination. Bioorganic & Medicinal Chemistry 21 (15): 4706-4713. doi: 10.1016/j.bmc.2013.04.085
  • Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents 55 (3): 105924. doi: 10.1016/j.ijantimicag.2020.105924
  • Lai MM, Cavanagh D (1997). The molecular biology of coronaviruses. Advances in Virus Research 48: 1-100. doi: 10.1016/S0065- 3527(08)60286-9
  • Lau KM, Lee KM, Koon CM, Cheung CS, Lau CP et al. (2008). Immunomodulatory and anti-SARS activities of Houttuynia cordata. Journal of Ethnopharmacology 118 (1): 79-85. doi: 10.1016/j.jep.2008.03.018
  • Letko M, Marzi A, Munster V (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology 5: 562-569. doi: 10.1038/s41564-020-0688-y
  • Li SY, Chen C, Zhang HQ, Guo HY, Wang H et al. (2005). Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Research 67 (1): 18-23. doi: 10.1016/j.antiviral.2005.02.007
  • Li T, Peng T (2013). Traditional Chinese herbal medicine as a source of molecules with antiviral activity. Antiviral Research 97 (1): 1-9. doi: 10.1016/j.antiviral.2012.10.006
  • Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L et al. (2005). Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Research 68 (1): 36-42. doi: 10.1016/j.antiviral.2005.07.002
  • Lin SC, Ho CT, Chuo WH, Li S, Wang TT et al. (2017). Effective inhibition of MERS-CoV infection by resveratrol. BMC Infectious Diseases 17 (1): 144. doi: 10.1186/s12879-017-2253- 8
  • Lu R, Zhao X, Li J, Niu P, Yang B, Wu H et al. (2020). Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395 (10224): 565-574. doi: 10.1016/S0140-6736(20)30251-8
  • Lubbe A, Seibert I, Klimkait T, Van Der Kooy F (2012). Ethnopharmacology in overdrive: the remarkable anti-HIV activity of Artemisia annua. Journal of Ethnopharmacology 141 (3): 854-859. doi: 10.1016/j.jep.2012.03.024
  • McCutcheon AR, Roberts TE, Gibbons E, Ellis SM, Babiuk LA et al. (1995). Antiviral screening of British Columbian medicinal plants. Journal of Ethnopharmacology 49 (2): 101-110. doi: 10.1016/0378-8741(95)90037-3
  • Michaelis M, Doerr HW, Cinatl-Jr J (2011). Investigation of the influence of EPs® 7630, a herbal drug preparation from Pelargonium sidoides, on replication of a broad panel of respiratory viruses. Phytomedicine 18 (5): 384-386. doi: 10.1016/j.phymed.2010.09.008
  • Moriyama M, Hugentobler WJ, Iwasaki A (2020). Seasonality of respiratory viral infections. Annual Review of Virology Vol. 7. doi: 10.1146/annurev-virology-012420-022445
  • Mubarak A, Alturaiki W, Hemida MG (2019). Middle East respiratory syndrome coronavirus (MERS-CoV): infection, immunological response, and vaccine development. Journal of Immunology Research 2019: 1-11. doi: 10.1155/2019/6491738
  • Müller C, Schulte FW, Lange-Grünweller K, Obermann W, Madhugiri R et al. (2018). Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Research 150: 123-129. doi: 10.1016/j. antiviral.2017.12.010
  • Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF et al. (2011). A structural analysis of M protein in coronavirus assembly and morphology. Journal of Structural Biology 174 (1): 11-22. doi: 10.1016/j.jsb.2010.11.021
  • Orzalli MH, Kagan JC (2017). Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends in Cell Biology 27 (11): 800-809. doi: 10.1016/j.tcb.2017.05.007
  • Oyston P, Robinson K (2012). The current challenges for vaccine development. Journal of Medical Microbiology 61 (7): 889- 894. doi: 10.1099/jmm.0.039180-0
  • Park JY, Yuk HJ, Ryu HW, Lim SH, Kim KS et al. (2017). Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 32 (1): 504-512. doi: 10.1080/14756366.2016.1265519
  • Perrier A, Bonnin A, Desmarets L, Danneels A, Goffard A et al. (2019). The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. The Journal of Biological Chemistry 294 (39): 14406-14421. doi: 10.1074/jbc.RA119.008964
  • Poon PM, Wong CK, Fung KP, Fong CY, Wong EL et al. (2006). Immunomodulatory effects of a traditional Chinese medicine with potential antiviral activity: a self-control study. The American Journal of Chinese Medicine 34 (1): 13-21. doi: 10.1142/S0192415X0600359X
  • Roh C (2012). A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide. International Journal of Nanomedicine 7: 2173-2179. doi: 10.2147/IJN.S31379
  • Ryu YB, Jeong HJ, Kim JH, Kim YM, Park JY et al. (2010). Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorganic & Medicinal Chemistry 18 (22): 7940-7947. doi: 10.1016/j.bmc.2010.09.035
  • Sassi BA, Harzallah-Skhiri F, Bourgougnon N, Aouni M (2008). Antiviral activity of some Tunisian medicinal plants against Herpes simplex virus type 1. Natural Product Research 22 (1): 53-65. doi: 10.1080/14786410701589790
  • Schnitzler P, Schuhmacher A, Astani A, Reichling J (2008). Melissa officinalis oil affects infectivity of enveloped herpesviruses. Phytomedicine 15 (9): 734-740. doi: 10.1016/j. phymed.2008.04.018
  • Semple SJ, Reynolds GD, O’leary MC, Flower RLP (1998). Screening of Australian medicinal plants for antiviral activity. Journal of Ethnopharmacology 60 (2): 163-172. doi: 10.1016/s0378- 8741(97)00152-9
  • Sharma AD (2020). Eucalyptol (1, 8 cineole) from eucalyptus essential oil a potential inhibitor of COVID 19 corona virus infection by molecular docking studies. Preprints 2020: 2020030455. doi: 10.20944/preprints202003.0455.v1
  • Sharma AD, Kaur I (2020). Jensenone from eucalyptus essential oil as a potential inhibitor of COVID 19 corona virus infection. Research & Reviews in Biotechnology & Biosciences 7 (1): 59- 66. doi: 10.20944/preprints202003.0455.v1
  • Shen L, Niu J, Wang C, Huang B, Wang W et al. (2019). Highthroughput screening and identification of potent broad spectrum inhibitors of coronaviruses. Journal of Virology 93 (12): e00023-e00019. doi: 10.1128/JVI.00023-19
  • Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S (2013). Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Research 100 (3): 605-614. doi: 10.1016/j. antiviral.2013.09.028
  • Suryanarayana L, Banavath D (2020). A Review on identification of antiviral potential medicinal plant compounds against with COVID-19. International Journal of Research in Engineering, Science and Management 3 (3): 675-679.
  • Takahashi S, Yoshiya T, Yoshizawa-Kumagaye K, Sugiyama T (2015). Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean. Biomedical Research 36 (3): 219-224. doi: 10.2220/biomedres.36.219
  • Tallei TE, Tumilaar SG, Niode NJ, Fatimawali F, Kepel BJ et al. (2020). Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: a molecular docking study. Preprints 2020: 2020040102. doi: 10.20944/preprints202004.0102.v2
  • Ul Qamar MT, Alqahtani SM, Alamri MA, Chen LL (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis 2020 March 26 [available online] (in press). doi: 10.1016/j.jpha.2020.03.009
  • Ulasli M, Gurses SA., Bayraktar R, Yumrutas O, Oztuzcu S et al. (2014). The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Molecular Biology Reports 41 (3): 1703-1711. doi: 10.1007/s11033-014- 3019-7
  • Vieira RF, Bizzo HR, Deschamp, C (2010). Genetic resources of aromatic plants from Brazil. Israel Journal of Plant Sciences 58 (3-4): 263-271. doi: 10.1560/IJPS.58.2.263
  • Wang W, Ma X, Han J, Zhou M, Ren H et al. (2016). Neuroprotective effect of scutellarin on ischemic cerebral injury by downregulating the expression of angiotensin-converting enzyme and AT1 Receptor. Public Library of Science One 11 (1): e0146197. doi: 10.1371/journal.pone.0146197
  • Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY et al. (2007). Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. Journal of Medicinal Chemistry 50 (17): 4087-4095. doi: 10.1021/ jm070295s
  • Wen CC, Shyur LF, Jan JT, Liang PH, Kuo CJ et al. (2011). Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. Journal of Traditional and Complementary Medicine 1 (1): 41-50. doi: 10.1016/ s2225-4110(16)30055-4
  • Wink M (2020). Potential of DNA intercalating alkaloids and other plant secondary metabolites against SARS-CoV-2 Causing COVID-19. Diversity 12 (5): 175. doi: 10.3390/d12050175
  • Woo PC, Huang Y, Lau SK, Yuen KY (2010). Coronavirus genomics and bioinformatics analysis. Viruses 2 (8): 1804-1820. doi: 10.3390/v2081803
  • Woo PC, Wang M, Lau SK, Xu H, Poon RW et al. (2007). Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. Journal of Virology 81 (4): 15741585. doi: 10.1128/JVI.02182- 06
  • Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF et al. (2004). Small molecules targeting severe acute respiratory syndrome human coronavirus. Proceedings of the National Academy of Sciences of the United States of America 101 (27): 10012-10017. doi: 10.1073/pnas.0403596101
  • Yang CW, Chang HY, Lee YZ, Hsu HY, Lee SJ (2018). The cardenolide ouabain suppresses coronaviral replication via augmenting a Na+/K+-ATPase-dependent PI3K_PDK1 axis signaling. Toxicology and Applied Pharmacology 356: 90-97. doi: 10.1016/j.taap.2018.07.028
  • Yang CW, Lee YZ, Kang IJ, Barnard DL, Jan JT et al. (2010). Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus. Antiviral Research 88 (2): 160-168. doi: 10.1016/j.antiviral.2010.08.009
  • Yang Y, Islam M S, Wang J, Li Y, Chen X (2020). Traditional Chinese medicine in the treatment of patients infected with 2019- new coronavirus (SARS-CoV-2): a review and perspective. International Journal of Biological Sciences 16 (10): 1708- 1717. doi: 10.7150/ijbs.45538
  • Yi L, Li Z, Yuan K, Qu X, Chen J et al. (2004). Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. Journal of Virology 78 (20): 11334- 11339. doi: 10.1128/JVI.78.20.11334-11339.2004
  • Yin Y, Wunderink RG (2018). MERS, SARS and other coronaviruses as causes of pneumonia. Respirology 23 (2): 130-137. doi: 10.1111/resp.13196
  • Yonesi M, Rezazadeh A (2020). Plants as a prospective source of natural anti-viral compounds and oral vaccines against COVID-19 coronavirus. Preprints 2020: 2020040321. doi: 10.20944/preprints202004.0321.v1
  • Yu MS, Lee J, Lee JM, Kim Y, Chin YW et al. (2012). Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic & Medicinal Chemistry Letters 22 (12): 4049-4054. doi: 10.1016/j. bmcl.2012.04.081
  • Zhang Q, Wang Y, Qi C, Shen L, Li J (2020a). Clinical trial analysis of 2019‐nCoV therapy registered in China. Journal of Medical Virology 92 (6): 540-545. doi: 10.1002/jmv.25733
  • Zhang W, Du RH, Li B, Zheng XS, Yang XL et al. (2020b). Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerging Microbes & Infections 9 (1): 386-389. doi: 10.1080/22221751.2020.1729071
  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270-273 doi: 10.1038/s41586-020-2012-7
  • Zhuang M, Jiang H, Suzuki Y, Li X, Xiao P et al. (2009). Procyanidins and butanol extract of Cinnamomi cortex inhibit SARS-CoV infection. Antiviral Research 82 (1): 73-81. doi: 10.1016/j. antiviral.2009.02.001
  • Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY (2016). Coronaviruses –drug discovery and therapeutic options. Nature Reviews Drug discovery 15 (5): 327-347. doi: 10.1038/nrd.2015.37
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Biosafety and biosecurity approaches to restrain/contain and counter SARS-CoV-2/ COVID-19 pandemic: a rapid-review

Muhammad KHAN, Haroon, Khan SHARUN, Irfan AHMED, Ruchi TIWARI, Alfonso J. RODRIGUEZ MORALES, Jin HUI, Fazal Mehmood KHAN, Taha Hussien MUSA, Tauseef AHMAD, D. Katterine BONILLA ALDANA, Kuldeep DHAMA

Potentials of plant-based substance to inhabit and probable cure for the COVID-19

Ahmet ONAY, Israt JAHAN

Interaction of certain monoterpenoid hydrocarbons with the receptor binding domain of 2019 novel coronavirus (2019-nCoV), transmembrane serine protease 2 (TMPRSS2), cathepsin B, and cathepsin L (CatB/L) and their pharmacokinetic properties

Erman Salih İSTİFLİ, Bektaş TEPE, Cengiz SARIKÜRKCÜ, Arzuhan ŞIHOĞLU TEPE

Integration of transcriptomic profile of SARS-CoV-2 infected normal human bronchial epithelial cells with metabolic and protein-protein interaction networks

Hamza Umut KARAKURT, Pınar PİR

SARS-CoV-2 neutralizing antibody development strategies

Şaban TEKİN, Melis DENİZCİ ÖNCÜ, Hasan Ümit ÖZTÜRK, Filiz KAYA, Aylin ÖZDEMİR BAHADIR, Bertan Koray BALCIOĞLU, Müge SERHATLI, Fatıma YÜCEL, Hivda ÜLBEĞİ POLAT

SARS-CoV-2 isolation and propagation from Turkish COVID-19 patients

Ercüment OVALI, Merve AÇIKEL ELMAS, Serap ARBAK, Cihan TAŞTAN, Derya DİLEK KANÇAĞI, Bulut YURTSEVER, Selen ABANUZ, Utku SEYİS, Selçuk BİRDOĞAN, Ayşe Sesin KOCAGÖZ, Koray YALÇIN, Gözde SIR KARAKUŞ, Mülazim YILDIRIM, Recai KUZAY, Ömer ELİBOL, Osman Uğur SEZERMAN, Sevda DEMİR

Covid-19: current knowledge, disease potential, prevention and clinical advances

Nikhat IMAM, Aftab ALAM, Mohd Faizan SIDDIQUI, Md. Mushtaque, Rafat ALI, Romana ISHRAT

Mesenchymal stem cell derived extracellular vesicles: promising immunomodulators against autoimmune, autoinflammatory disorders and SARS-CoV-2 infection

İhsan GÜRSEL, Özlem BULUT

An updated analysis of variations in SARS-CoV-2 genome

Osman Mutluhan UĞUREL, Dilek TURGUT BALIK, Oğuz ATA

Gut-lung axis and dysbiosis in COVID-19

Belma ASLIM, Büşra AKTAŞ