Integration of transcriptomic profile of SARS-CoV-2 infected normal human bronchial epithelial cells with metabolic and protein-protein interaction networks

Integration of transcriptomic profile of SARS-CoV-2 infected normal human bronchial epithelial cells with metabolic and protein-protein interaction networks

A novel coronavirus (SARS-CoV-2, formerly known as nCoV-2019) that causes an acute respiratory disease has emerged in Wuhan, China and spread globally in early 2020. On January the 30th, the World Health Organization (WHO) declared spread of this virus as an epidemic and a public health emergency. With its highly contagious characteristic and long incubation time, confinement of SARS-CoV-2 requires drastic lock-down measures to be taken and therefore early diagnosis is crucial. We analysed transcriptome of SARS-CoV-2 infected human lung epithelial cells, compared it with mock-infected cells, used network-based reporter metabolite approach and integrated the transcriptome data with protein-protein interaction network to elucidate the early cellular response. Significantly affected metabolites have the potential to be used in diagnostics while pathways of protein clusters have the potential to be used as targets for supportive or novel therapeutic approaches. Our results are in accordance with the literature on response of IL6 family of cytokines and their importance, in addition, we find that matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) with keratan sulfate synthesis pathway may play a key role in the infection. We hypothesize that MMP9 inhibitors have potential to prevent “cytokine storm” in severely affected patients.

___

  • Akhmedov M, Kedaigle, A, Chong, RE, Montemanni, R, Bertoni, F et al. (2017). PCSF: an R-package for network-based interpretation of high-throughput data. PLoS Computational Biology 13 (7): e1005694. doi: 10.1371/journal.pcbi.1005694
  • Aquino RS, Park PW (2016). Glycosaminoglycans and infection. Frontiers in Bioscience – Landmark 21: 1260-1277. doi: 10.2741/4455
  • Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF et al. (2013). NCBI GEO: archive for functional genomics data sets - update. Nucleic Acids Research 41 (D1): 991-995. doi: 10.1093/nar/ gks1193
  • Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D et al. (2020). Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181 (5): 1036-1045. doi: 10.1016/j.cell.2020.04.026
  • Blighe, K (2019). Publication-ready volcano plots with enhanced colouring and labeling. R-Package.Bioconductor doi: 10.18129/ B9.bioc.EnhancedVolcano
  • Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008 (10). doi: 10.1088/1742-5468/2008/10/P10008
  • Bray NL, Pimentel H, Melsted P, Pachter L (2016). Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology 34 (5): 525-527. doi: 10.1038/nbt.3519
  • Çakır T (2015). Reporter pathway analysis from transcriptome data: metabolite-centric versus reaction-centric approach. Scientific Reports 5: 1-10. doi: 10.1038/srep14563
  • Chandra N, Liu Y, Liu JX, Frängsmyr L, Wu N et al. (2019). Sulfated glycosaminoglycans as viral decoy receptors for human adenovirus type 37. Viruses 11 (3): 247. doi: 10.3390/v11030247
  • Chavakis T, Bierhaus A, Nawroth PP (2004). RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microbes and Infection 6 (13): 1219- 1225. doi: 10.1016/j.micinf.2004.08.004
  • Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D (2020). Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. International Journal of Antimicrobial Agents 55 (4). doi: 10.1016/j.ijantimicag.2020.105932
  • Csardi G, Nepusz T (2006). The igraph software package for complex network research. InterJournal Complex Systems 1695: 1-9.
  • Dabo AJ, Cummins N, Eden E, Geraghty P (2015). Matrix metalloproteinase 9 exerts antiviral activity against respiratory syncytial virus. PLoS One 10 (8): e0135970. doi: 10.1371/ journal.pone.0135970
  • Elkington PTG, O’Kane CM, Friedland JS, (2005). The paradox of matrix metalloproteinases in infectious disease. Clinical and Experimental Immunology 142 (1): 12-20. doi: 10.1111/j.1365- 2249.2005.02840.x
  • Foronjy RF, Dabo AJ, Cummins N, Geraghty P (2014). Leukemia inhibitory factor protects the lung during respiratory syncytial viral infection. BMC Immunology 15 (1): 41. doi: 10.1186/ s12865-014-0041-4
  • Guha D, Klamar CR, Reinhart T, Ayyavoo V (2015). Transcriptional regulation of CXCL5 in HIV-1-infected macrophages and its functional consequences on CNS pathology. Journal of Interferon and Cytokine Research 35 (5): 373-384. doi: 10.1089/jir.2014.0135
  • Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD et al. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Military Medical Research 7 (1): 1-10. doi: 10.1186/s40779- 020-00240-0
  • Herold T, Jurinovic V, Arnreich C, Lipworth BJ, Hellmuth JC et al. (2020). Elevated levels of interleukin-6 and CRP predict the need for mechanical ventilation in COVID-19. The Journal of Allergy and Clinical Immunology. doi: 10.1016/j. jaci.2020.05.008
  • Hudson BI, Lippman ME (2018). Targeting RAGE signaling in inflammatory disease. Annual Review of Medicine 69: 349- 364. doi: 10.1146/annurev-med-041316-085215
  • Hui L, Nie Y, Li S, Guo M, Yang W et al. (2020). Matrix metalloproteinase 9 facilitates Zika virus invasion of the testis by modulating the integrity of the blood-testis barrier. PLoS Pathogens 16 (4): e1008509. doi: 10.1371/journal.ppat.1008509
  • Jiang F, Deng L, Zhang L, Cai Y, Cheung CWet al. (2020). Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). Journal of General Internal Medicine 382 (18): 1708-1720. doi: 10.1007/s11606-020-05762-w
  • Jinno A, Park PW (2015). Role of Glycosaminoglycans in Infectious Disease. In: Balagurunathan K, Nakato H, Desai U (editors). Glycosaminoglycans. Methods in Molecular Biology, Vol 1229. New York, NY, USA: Humana Press.
  • Leinonen R, Sugawara H, Shumway M, on behalf of the International Nucleotide Sequence Database Collaboration (2010). The sequence read archive. Nucleic Acids Research 39 (suppl_1): D19-D21. doi: 10.1093/nar/gkq1019
  • Liao QJ, Ye LB, Timani KA, Zeng YC, She YL et al. (2005). Activation of NF-κB by the full-length nucleocapsid protein of the SARS coronavirus. Acta Biochimica et Biophysica Sinica 37 (9): 607- 612. doi: 10.1111/j.1745-7270.2005.00082.x
  • Love MI, Huber W, Anders S (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15 (12). doi: 10.1186/s13059-014-0550-8
  • Lu R, Zhao X, Li J, Niu P, Yang B et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet 395 (10224): 565-574. doi:10.1016/S0140-6736(20)30251-8
  • Marten NW, Zhou J (2005). The Role of Metalloproteinases in Corona Virus Infection. In: Lavi E, Constantinescu CS (editors). Experimental Models of Multiple Sclerosis (839-848). Boston, MA, USA: Springer, pp. 839-848. Mason RJ (2020). Pathogenesis of COVID-19 from a cell biology perspective. The European Respiratory Journal 55 (4): 2000607. doi: 10.1183/13993003.00607-2020
  • Miller AL, Bowlin TL, Lukacs NW (2004). Respiratory syncytial virus–induced chemokine production: linking viral replication to chemokine production in vitro and in vivo. The Journal of Infectious Diseases 189 (8): 1419-1430. doi: 10.1086/382958
  • Nepusz T, Yu H, Paccanaro A (2012). Detecting overlapping protein complexes in protein-protein interaction networks. Nature Methods 9: 471-472. doi: 10.1038/nmeth.1938
  • Ohtsu A, Shibutani Y, Seno K, Iwata H, Kuwayama T et al.(2017). Advanced glycation end products and lipopolysaccharides stimulate interleukin-6 secretion via the RAGE/TLR4- NF-κB-ROS pathways and resveratrol attenuates these inflammatory responses in mouse macrophages. Experimental and Therapeutic Medicine 14 (5): 4363-4370. doi: 10.3892/ etm.2017.5045
  • Patil KR, Nielsen J (2005). Uncovering transcriptional regulation of metabolism by using metabolic network topology. PNAS 102 (8): 2685-2689. doi: 10.1073/pnas.0406811102
  • Rojas-Quintero J, Wang X, Tipper J, Burkett PR, Zuñiga J et al. (2018). Matrix metalloproteinase-9 deficiency protects mice from severe influenza A viral infection. JCI Insight 3 (24): e99022. doi: 10.1172/jci.insight.99022
  • Ruiz-Gómez G, Vogel S, Möller S, Pisabarro MT, Hempel U (2019). Glycosaminoglycans influence enzyme activity of MMP2 and MMP2/TIMP3 complex formation - insights at cellular and molecular level. Scientific Reports 9: 1-15. doi: 10.1038/ s41598-019-41355-2
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13 (11): 2498-2504. doi: 10.1101/gr.1239303
  • Song J, Wu C, Zhang X, Sorokin LM (2013). In vivo processing of CXCL5 (LIX) by mMatrix metalloproteinase (MMP)-2 and MMP-9 promotes early neutrophil recruitment in IL-1β– induced peritonitis. The Journal of Immunology 190 (1): 401- 410. doi: 10.4049/jimmunol.1202286
  • Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O et al. (2020). COVID-19: combining antiviral and anti-inflammatory treatments. The Lancet Infectious Diseases 20 (4): 400-402. doi: 10.1016/S1473-3099(20)30132-8
  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D et al. (2015). STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Research 43: D447-D452. doi: 10.1093/nar/gku1003
  • Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S et al. (2013). A community-driven global reconstruction of human metabolism. Nature Biotechnology 31: 419-425. doi: 10.1038/ nbt.2488
  • Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR et al. (2012). Into the eye of the cytokine storm. Microbiology and Molecular Biology Reviews 76 (1): 16-32. doi: 10.1128/mmbr.05015-11
  • Tufan A, Avanoğlu Güler G, Matucci-Cerinic M (2020). COVID-19, immunesystem response, hyperinflammation and repurposing antirheumatic drugs. Turkish Journal of Medical Sciences 50: 620-632. doi: 10.3906/sag-2004-168
  • Van Zoelen MAD, Achouiti A, Van der Poll T (2011). The role of receptor for advanced glycation endproducts (RAGE) in infection. Critical Care 15 (2): 208. doi: 10.1186/cc9990
  • Wang M, Cao R, Zhang L, Yang X, Liu J et al. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research 30: 269-271. doi: 10.1038/s41422-020-0282-0
  • Wang P, Dai J, Bai F, Kong KF, Wong SJ et al. (2008). Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. Journal of Virology 82 (18): 8978-8985. doi: 10.1128/ jvi.00314-08
  • Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S et al. (2008). DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research 36 (Database issue): D901-D906. doi: 10.1093/nar/gkm958
  • Xie X, Urabe G, Marcho L, Stratton M, Guo LW et al. (2019). ALDH1A3 regulations of matricellular proteins promote vascular smooth muscle cell proliferation. iScience 19: 872- 882. doi: 10.1016/j.isci.2019.08.044
  • Yang CM, Lin CC, Lee IT, Lin YH, Yang CM et al. (2012). Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/PDGFR/PI3K/Akt/MAPKsdependent AP-1 pathway in rat brain astrocytes. Journal of Neuroinflammation 9 (12). doi: 10.1186/1742-2094-9-1
  • Ye Q, Wang B, Mao J (2020). Cytokine storm in COVID-19 and treatment. The Journal of Infection 80. doi: 10.1016/j. jinf.2020.03.037
  • Yoshizaki T, Sato H, Furukawa M, Pagano JS (1998). The expression of matrix metalloproteinase 9 is enhanced by Epstein-Barr virus latent membrane protein 1. PNAS 95 (7): 3621-3626. doi: 10.1073/pnas.95.7.3621
  • Yu G, Wang LG, Han Y, He QY (2012). ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology 16 (5): 284-287. doi: 10.1089/ omi.2011.0118
  • Zhang C, Wu Z, Li JW, Zhao H, Wang GQ (2020). The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. International Journal of Antimicrobial Agents 55 (5): 105954. doi: 10.1016/j.ijantimicag.2020.105954
  • Zhang T, Suryawanshi YR, Szymczyna BR, Essani K (2017). Neutralization of matrix metalloproteinase-9 potentially enhances oncolytic efficacy of tanapox virus for melanoma therapy. Medical Oncology 34 (7): 129. doi: 10.1007/s12032- 017-0988-0
  • Zhu N, Zhang D, Wang W, Li X, Yang B et al (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine. doi: 10.1056/NEJMoa2001017
  • Zou X, Chen K, Zou J, Han P, Hao J et al. (2020). Single-cell RNAseq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers of Medicine 14: 185-192. doi: 10.1007/s11684-020-0754-0
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Phylogenetic analysis of SARS-CoV-2 genomes in Turkey

Ogün ADEBALİ, Aylin BİRCAN, Defne ÇİRCİ, Burak İŞLEK, Zeynep KILINÇ, Berkay SELÇUK, Berk TURHAN

Mesenchymal stem cell derived extracellular vesicles: promising immunomodulators against autoimmune, autoinflammatory disorders and SARS-CoV-2 infection

İhsan GÜRSEL, Özlem BULUT

Gut-lung axis and dysbiosis in COVID-19

Belma ASLIM, Büşra AKTAŞ

Integration of transcriptomic profile of SARS-CoV-2 infected normal human bronchial epithelial cells with metabolic and protein-protein interaction networks

Hamza Umut KARAKURT, Pınar PİR

An updated analysis of variations in SARS-CoV-2 genome

Osman Mutluhan UĞUREL, Dilek TURGUT BALIK, Oğuz ATA

Covid-19: current knowledge, disease potential, prevention and clinical advances

Nikhat IMAM, Aftab ALAM, Mohd Faizan SIDDIQUI, Md. Mushtaque, Rafat ALI, Romana ISHRAT

SARS-CoV-2 isolation and propagation from Turkish COVID-19 patients

Ercüment OVALI, Merve AÇIKEL ELMAS, Serap ARBAK, Cihan TAŞTAN, Derya DİLEK KANÇAĞI, Bulut YURTSEVER, Selen ABANUZ, Utku SEYİS, Selçuk BİRDOĞAN, Ayşe Sesin KOCAGÖZ, Koray YALÇIN, Gözde SIR KARAKUŞ, Mülazim YILDIRIM, Recai KUZAY, Ömer ELİBOL, Osman Uğur SEZERMAN, Sevda DEMİR

An insight into the epitope-based peptide vaccine design strategy and studies against COVID-19

Tülin ARASOĞLU, Burcu UÇAR, Emrah Şefik ABAMOR, Dilek TURGUT BALIK, Erennur UĞUREL, Pelin PELİT ARAYICI, Serap DERMAN, Tayfun ACAR, Murat TOPUZOĞULLARI

SARS-CoV-2 neutralizing antibody development strategies

Şaban TEKİN, Melis DENİZCİ ÖNCÜ, Hasan Ümit ÖZTÜRK, Filiz KAYA, Aylin ÖZDEMİR BAHADIR, Bertan Koray BALCIOĞLU, Müge SERHATLI, Fatıma YÜCEL, Hivda ÜLBEĞİ POLAT

Biosafety and biosecurity approaches to restrain/contain and counter SARS-CoV-2/ COVID-19 pandemic: a rapid-review

Muhammad KHAN, Haroon, Khan SHARUN, Irfan AHMED, Ruchi TIWARI, Alfonso J. RODRIGUEZ MORALES, Jin HUI, Fazal Mehmood KHAN, Taha Hussien MUSA, Tauseef AHMAD, D. Katterine BONILLA ALDANA, Kuldeep DHAMA