FRET-based characterization of K264A, D345A, and Y335A mutants in the human dopamine transporter

FRET-based characterization of K264A, D345A, and Y335A mutants in the human dopamine transporter

The dopamine transporter (DAT) plays a role in the termination of dopaminergic neurotransmission; thereby it is accepted as the primary target of various psychostimulants. N-terminal phosphorylation of DAT has been proposed as a regulator in different DAT functions, such as amphetamine-induced efflux or PKC/PKA-mediated responses. To understand the role of N-terminal conformational changes in dopamine transporter structure and function, the fluorescence resonance energy transfer (FRET) method was applied to various DAT constructs fluorescently labeled at the N-terminus and substrate-induced conformational changes were determined using rhodamine-labeled cocaine analog JHC1-64 in three DAT mutants. The results indicated that the construct with YFP inserted into the N-terminal position-55 displayed effective interaction with the substrate and simultaneous mutation of two serine residues (S7 and S12) to alanine or aspartic acid demonstrated similar phenotypes as their wild-type (WT) counterparts. FRET was detectable for N-terminal p55 YFP WT, Ser/Ala, and Ser/Asp forms, but there was no significant difference among the three mutants, contrary to our expectations based on the previously proposed roles of these serine residues. In addition, three mutants (K264A, D345A, and Y335A) implemented in the position-55 YFP background were also investigated and the importance of Y335 in the translocation cycle and in the process of substrate release was verified.

___

  • Amara SG, Kuhar MJ (1993). Neurotransmitter transporters: recent progress. Annu Rev Neurosci 16: 73-93.
  • Beuming T, Kniazeff J, Bergmann ML, Shi L, Gracia L, Raniszewska K, Newman AH, Javitch JA, Weinstein H, Gether U et al. (2008). The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat Neurosci 11: 780-789.
  • Chen N, Rickey J, Berfield JL, Reith MEA (2004). Aspartate 345 of the dopamine transporter is critical for conformational changes in substrate translocation and cocaine binding. J Biol Chem 279: 5508-5519.
  • Cheng MH, Block E, Hu F, Cobanoglu MC, Sorkin A, Bahar I (2015). Insights into the modulation of dopamine transporter function by amphetamine, orphenadrine, and cocaine binding. Front Neurol 6: 134.
  • Damjanovich S, Vereb G, Schaper A, Jenei A, Matkó J, Pascual Starink JP, Fox GQ, Arndt-Jovin DJ, Jovin TM (1995). Structural hierarchy in the clustering of HLA class I molecules in the plasma membrane of human lymphoblastoid cells. P Natl Acad Sci USA 92: 1122-1126.
  • Forrest LR, Tavoulari S, Zhang YW, Rudnick G, Honig B (2007). Identification of a chloride ion binding site in Na+/Cl -dependent transporters. P Natl Acad Sci USA 104: 12761- 12766.
  • Granas C, Ferrer J, Loland CJ, Javitch JA, Gether U (2003). N-terminal truncation of the dopamine transporter abolishes phorbol ester- and substance p receptor-stimulated phosphorylation without impairing transporter internalization. J Biol Chem 278: 4990-5000.
  • Gu HH, Wu X, Giros B, Caron MG, Caplan MJ, Rudnick G (2001). The NH2 -terminus of norepinephrine transporter contains a basolateral localization signal for epithelial cells. Mol Biol Cell 12: 3797-3807.
  • Guptaroy B, Zhang M, Bowton E, Binda F, Shi L, Weinstein H, Galli A, Javitch JA, Neubig RR, Gnegy ME (2009). A juxtamembrane mutation in the n terminus of the dopamine transporter induces preference for an inward-facing conformation. Mol Pharmacol 75: 514-524.
  • Hastrup H, Karlin A, Javitch JA (2001). Symmetrical dimer of the human dopamine transporter revealed by cross-linking Cys-306 at the extracellular end of the sixth transmembrane segment. P Natl Acad Sci USA 98: 10055-10060.
  • Indarte M, Madura JD, Surratt CK (2007). Dopamine transporter comparative molecular modeling and binding site prediction using the LeuTAa leucine transporter as a template. Proteins Struct Funct Bioinforma 70: 1033-1046.
  • Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA, Galli A (2005). Amphetamine induces dopamine efflux through a dopamine transporter channel. P Natl Acad Sci USA 102: 3495-3500.
  • Khoshbouei H, Sen N, Guptaroy B, Johnson L, Lund D, Gnegy ME, Galli A, Javitch JA (2004). N-terminal phosphorylation of the dopamine transporter is required for amphetamine-induced efflux. PLoS Biol 2: e78.
  • Kniazeff J, Shi L, Loland CJ, Javitch JA, Weinstein H, Gether U (2008). An intracellular interaction network regulates conformational transitions in the dopamine transporter. J Biol Chem 283: 17691-17701.
  • Krishnamurthy H, Gouaux E (2012). X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481: 469-474.
  • Loland CJ, Grånäs C, Javitch JA, Gether U (2004). Identification of intracellular residues in the dopamine transporter critical for regulation of transporter conformation and cocaine binding. J Biol Chem 279: 3228-3238.
  • Loland CJ, Norgaard-Nielsen K, Gether U (2003). Probing dopamine transporter structure and function by zn2+-site engineering. Eur J Pharmacol 479: 187-197.
  • Loland CJ, Norregaard L, Litman T, Gether U (2002). Generation of an activating Zn2+ switch in the dopamine transporter: mutation of an intracellular tyrosine constitutively alters the conformational equilibrium of the transport cycle. P Natl Acad Sci USA 99: 1683-1688.
  • Meinild AK, Sitte HH, Gether U (2004). Zinc potentiates an uncoupled anion conductance associated with the dopamine transporter. J Biol Chem 279: 49671-49679.
  • Moritz AE, Foster JD, Gorentla BK, Mazei-Robison MS, Yang J-W, Sitte HH, Blakely RD, Vaughan RA (2013). Phosphorylation of dopamine transporter serine 7 modulates cocaine analog binding. J Biol Chem 288: 20-32.
  • Orun O, Rasmussen S, Gether U (2009). Introducing tetraCys motifs at two different sites results in a functional dopamine transporter. Acta Biol Hung 60: 15-25.
  • Orun O, Tiber PM (2015). Determination of spatial proximity between the N-terminus and cocaine binding site of the dopamine transporter by FRET. Marmara Medical Journal 28: 1-6.
  • Penmatsa A, Wang KH, Gouaux E (2013). X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503: 85-90.
  • Rees S, Coote J, Stables J, Goodson S, Harris S, Lee MG (1996). Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibiotic-resistant cells to express recombinant protein. Biotechniques 20: 102-110.
  • Rudnick G (1997). Neurotransmitter Transporters: Structure, Function and, Regulation. New York, NY, USA: Springer Science & Business Media.
  • Saunders C, Ferrer JV, Shi L, Chen J, Merrill G, Lamb ME, LeebLundberg LM, Carvelli L, Javitch JA, Galli A (2000). Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. P Natl Acad Sci USA 97: 6850-6855.
  • Scholze P, Nørregaard L, Singer EA, Freissmuth M, Gether U, Sitte HH (2002). The role of zinc ions in reverse transport mediated by monoamine transporters. J Biol Chem 277: 21505-21513.
  • Shan J, Javitch JA, Shi L, Weinstein H (2011). The substrate-driven transition to an inward-facing conformation in the functional mechanism of the dopamine transporter. PLoS One 6: e16350.
  • Sorkina T, Doolen S, Galperin E, Zahniser NR, Sorkin A (2003). Oligomerization of dopamine transporters visualized in living cells by fluorescence resonance energy transfer microscopy. J Biol Chem 278: 28274-28283.
  • Stockner T, Montgomery TR, Kudlacek O, Weissensteiner R, Ecker GF, Freissmuth M, Sitte HH (2013). Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model. PLoS Comput Biol 9: e1002909.
  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005). Crystal structure of a bacterial homologue of Na+/Cl- -dependent neurotransmitter transporters. Nature 437: 215-223.
  • Zomot E, Gur M, Bahar I (2015). Microseconds simulations reveal a new sodium-binding site and the mechanism of sodiumcoupled substrate uptake by LeuT. J Biol Chem 290: 544-555.