Heterologous expression and characterization of a high redox potential laccase from Coriolopsis polyzona MUCL 38443

Heterologous expression and characterization of a high redox potential laccase from Coriolopsis polyzona MUCL 38443

In this study, a novel laccase gene, named as Cplcc1, and its corresponding cDNA were isolated and characterized from the Coriolopsis polyzona MUCL 38443 strain. The Cplcc1 gene consists of a 1563-bp open reading frame encoding a protein of 520 amino acids with a 20-residue putative signal peptide. The size of the Cplcc1 gene is 2106 bp and it contains ten introns and five potential N-glycosylation sites. Additionally, the isolated full-length Cplcc1 cDNA was successfully expressed in Pichia pastoris. The heterologous expression conditions were also optimized and the highest activity value increased to 800 U L 1 with 1.5% methanol, 0.8 mM CuSO4 , and 0.6% L-alanine supplementation. The recombinant laccase was partially purified and the molecular weight was found as approximately 54 kDa. The maximum oxidation activity was observed for 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) at pH 3.0. The optimal temperature was found as 70 °C. On the other hand, at 30 °C, the enzyme was stable for more than a week and its half-life was longer than 8 h. The Km, Vmax, kcat, and kcat Km1 values of the recombinant laccase were identified as 0.137 mM, 288.6 µmol min 1 L 1, 5.73 × 105 min 1, and 4.18 × 106 min 1 mM 1,respectively. Sodium azide, L-cysteine, and SDS were found as usual inhibitors.

___

  • Antosova Z, Sychrova H (2016). Yeast hosts for the production of recombinant laccases: a review. Mol Biotechnol 58: 93-116.
  • Baldrian P (2006). Fungal laccases–occurrence and properties. FEMS Microbiol Rev 30: 215-242.
  • Baldrian P, Gabriel J (2002). Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol Lett 206: 69-74.
  • Bento I, Martins LO, Lopes GG, Carrondo MA, Lindley PF (2005). Dioxygen reduction by multi-copper oxidases; a structural perspective. Dalton Trans 21: 3507-3513.
  • Cassland P, Jönsson LJ (1999). Characterization of a gene encoding Trametes versicolor laccase A and improved heterologous expression in Saccharomyces cerevisiae by decreased cultivation temperature. Appl Microbiol Biotechnol 52: 393-400.
  • Chandra R, Chowdhary P (2015). Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts 17: 326-342.
  • de Wilde C, Uzan E, Zhou Z, Kruus K, Andberg M, Buchert J, Record E, Asther M, Lomascolo A (2008). Transgenic rice as a novel production system for Melanocarpus and Pycnoporus laccases. Transgenic Res 17: 515-527.
  • D’Souza TM, Merrit CS, Reddy CA (1999). Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Appl Environ Microbiol 65: 5307-5313.
  • Dubé E, Shareck F, Hurtubise Y, Daneault C, Beauregard M (2008). Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Appl Microbiol Biotechnol 79: 597-603.
  • Eriksson KEL, Blanchette RA, Ander P (1990). Biodegradation of lignin. In: Timmel TE, editor. Microbial and Enzymatic Degradation of Wood and Wood Components. Berlin, Germany: Springer-Verlag, pp. 237-247.
  • Galhaup C, Goller S, Peterbauer CK, Strauss J, Haltrich D (2002). Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148: 2159-2169.
  • Garcia TA, Santiago MF, Ulhoa CJ (2007). Studies on the Pycnoporus sanguineus CCT-4518 laccase purified by hydrophobic interaction chromatography. Appl Microbiol Biotechnol 75: 311-318.
  • Gassara-Chatti F, Brar SK, Ajila CM, Verma M, Tyagi RD, Valero JR (2013). Encapsulation of ligninolytic enzymes and its application in clarification of juice. Food Chem 137: 18-24.
  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010). Laccases: a never-ending story. Cell Mol Life Sci  67: 369-385.
  • Gu C, Zheng F, Long L, Wang J, Ding S (2014). Engineering the expression and characterization of two novel laccase isoenzymes from Coprinus comatus in Pichia pastoris by fusing an additional ten amino acids tag at N-terminus. PLoS One 9: e93912.
  • Guo M, Lu F, Du L, Pu J, Bai D (2006). Optimization of the expression of a laccase gene from Trametes versicolor in Pichia methanolica. Appl Microbiol Biotechnol 71: 848-852.
  • Hong F, Meinander NQ, Jönsson LJ (2002). Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnol Bioeng 79: 438-449.
  • Hoshida H, Nakao M, Kanazawa H, Kubo K, Hakukawa T, Morimasa K, Akada R, Nishizawa Y (2001). Isolation of five laccase gene sequences from the white-rot fungus Trametes sanguinea by PCR, and cloning, characterization and expression of the laccase cDNA in yeasts. J Biosci Bioeng 92: 372-380.
  • Jaouani A, Tabka MG, Penninckx MJ (2006). Lignin modifying enzymes of Coriolopsis polyzona and their role in olive oil mill wastewaters decolourisation. Chemosphere 62: 1421-1430.
  • Kalyani D, Tiwari MK, Li J, Kim SC, Kalia VC, Kang YC, Lee JK (2015). A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and its application in the hydrolysis of biomass. PLoS One 10: e0120156.
  • Karahanian E, Corsini G, Lobos S, Vicuña R (1998). Structure and expression of a laccase gene from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochim Biophys Acta 1443: 65- 74.
  • Kiiskinen LL, Kruus K, Bailey M, Ylösmäki E, Siika-Aho M, Saloheimo M (2004). Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology 150: 3065-3074.
  • Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  • Lanzellotto C, Favero G, Antonelli ML, Tortolini C, Cannistraro S, Coppari E, Mazzei F (2014). Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: preparation, characterization and analytical applications. Biosens Bioelectron 15: 430-437.
  • Liu W, Chao Y, Liu S, Bao H, Qian S (2003). Molecular cloning and characterization of a laccase gene from the basidiomycete Fome lignousus and expression in Pichia pastoris. Appl Microbiol Biotechnol 63: 174-181.
  • Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005). Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249-270.
  • Madzak C, Otterbein L, Chamkha M, Moukha S, Asther M, Gaillardin C, Beckerich JM (2005). Heterologous production of a laccase from the basidiomycete Pycnoporus cinnabarinus in the dimorphic yeast Yarrowia lipolytica. FEMS Yeast Res 5: 635-646.
  • Majeau JA, Brar SK, Tyagi RD (2010). Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101: 2331-2350.
  • Messerschmidt A (1997). Spatial structures of ascorbate oxidase, laccase and related proteins: implications for the catalytic mechanism. In: Messerschmidt A, editor. Multi-Copper Oxidases. 1st ed. Singapore: World Scientific, pp. 23-80.
  • Mikuni J, Morohoshi N (1997). Cloning and sequencing of a second laccase gene from the white-rot fungus Coriolus versicolor. FEMS Microbiol Lett 155: 79-84.
  • More SS, Renuka PS, Pruthvi K, Swetha M, Malini S, Veena SM (2011). Isolation, purification, and characterization of fungal laccase from Pleurotus sp. Enzyme Res 2011: 248735.
  • O’Callaghan J, O’Brien M, McClean K, Dobson AD (2002). Optimisation of the expression of a Trametes versicolor laccase gene in Pichia pastoris. J Ind Microbiol Biotechnol 29: 55-59.
  • Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2010). Uses of laccases in the food industry. Enzyme Res 2010: 918761.
  • Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G (1997). A novel white laccase from Pleurotus ostreatus. J Biol Chem 272: 31301-31307.
  • Pezzella C, Autore F, Giardina P, Piscitelli A, Sannia G, Faraco V (2009). The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members. Curr Genet 55: 45-57.
  • Piscitelli A, Pezzella C, Giardina P, Faraco V, Sannia G (2010). Heterologous laccase production and its role in industrial applications. Bioeng Bugs 1: 252-262.
  • Riva S (2006). Laccases: blue enzymes for green chemistry. Trends Biotechnol 24: 219-226.
  • Soden DM, O’Callaghan J, Dobson AD (2002). Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology 148: 4003-4014.
  • Stoilova I, Krastanov A, Stanchev V (2010). Properties of crude laccase from Trametes versicolor produced by solid-substrate fermentation. Adv Biosci Biotechnol 1: 208-215.
  • Sun J, Peng RH, Xiong AS, Tian Y, Zhao W, Xu H, Liu DT, Chen JM, Yao QH (2012). Secretory expression and characterization of a soluble laccase from the Ganoderma lucidum strain 7071-9 in Pichia pastoris. Mol Biol Rep 39: 3807-3814.
  • Sun S, Zhang Y, Que Y, Liu B, Hu K, Xu L (2013). Purification and characterization of fungal laccase from Mycena purpureofusca. Chiang Mai J Sci 40: 151-160.
  • Téllez-Jurado A, Arana-Cuenca A, Becerra AG, Viniegra-González G, Loera O (2006). Expression of a heterologous laccase by Aspergillus niger cultured by solid-state and submerged fermentations. Enzyme Microb Tech 38: 665-669.
  • Temp U, Zierold U, Eggert C (1999). Cloning and characterization of a second laccase gene from the lignin degrading basidomycete Pycnoporus cinnabarinus. Gene 236: 169-177.
  • ten Have R, Teunissen JMP (2001). Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101: 3397- 3413.
  • Uzan E, Nousiainen P, Balland V, Sipila J, Piumi F, Navarro D, Asther M, Record E, Lomascolo A (2010). High redox potential laccases from the ligninolytic fungi Pycnoporus coccineus and Pycnoporus sanguineus suitable for white biotechnology: from gene cloning to enzyme characterization and applications. J Appl Microbiol 108: 2199-2213.
  • Viswanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G (2014). Fungal laccases and their applications in bioremediation. Enzyme Res 2014: 1-21.
  • Wang GD, Li QJ, Luo B, Chen XY (2004). Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat Biotechnol 22: 893-897.
  • Wang J, Feng J, Jia W, Chang S, Li S, Li Y (2015). Lignin engineering through laccase modification: a promising field for energy plant improvement. Biotechnol Biofuels 8: 145.
  • Xu F, Berka RM, Wahleithner JA, Nelson BA, Shuster JR, Brown SH, Palmer AE, Solomon EI (1998). Site-directed mutagenesis in fungal laccases: effect on redox potential, activity and pH profile. Biochem J 334: 63-70.
  • Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, Schneider P, Halkier T, Mondorf K, Dalboge H (1996). Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol 62: 834-841.
  • You LF, Liu ZM, Lin JF, Guo LQ, Huang XL, Yang HX (2014). Molecular cloning of a laccase gene from Ganoderma lucidum and heterologous expression in Pichia pastoris. J Basic Microbiol 54: S134-S141.