Genetic engineering of an industrial strain of Streptomyces clavuligerus for further enhancement of clavulanic acid production

Genetic engineering of an industrial strain of Streptomyces clavuligerus for further enhancement of clavulanic acid production

An industrial clavulanic acid (CA) overproducer Streptomyces clavuligerus strain, namely DEPA, was engineered to further enhance its CA production. Single or multiple copies of ccaR, claR (pathway-specific activators), and cas2 (CA synthase) genes under the control of different promoters were introduced into this strain. CA titers of the resulting recombinants were analyzed by HPLC in a dynamic fashion and compared to the vector-only controls and a wild-type strain of S. clavuligerus while their growth was monitored throughout fermentation. The addition of an extra copy of ccaR, under control of its own promoter or constitutive ermE* promoter (PermE* ), led to 7.6- and 2.3-fold increased volumetric levels of CA in respective recombinants, namely the AK9 and ID3 strains. Its highly stable multicopy expression by the glpF promoter (PglpF) provided up to 25.9-fold enhanced volumetric CA titers in the respective recombinant, IDG3. claR expression controlled with its own promoter or ermE* and glpF-mediated amplification in an industrial strain brought about only about 1.2-fold increase in the volumetric CA titers. An extra copy of cas2 integration with PermE* into the S. clavuligerus DEPA genome led to 3.8-fold higher volumetric CA production by GV61. Conclusively, multicopy expression of ccaR under PglpF can result in significantly improved industrial high-titer CA producers.

___

  • Álvarez-Álvarez R,  Rodríguez-García A,  Santamarta I,  PérezRedondo R, Prieto-Domínguez A, Martínez-Burgo Y, Liras P (2014). Transcriptomic analysis of Streptomyces clavuligerus ΔccaR::tsr effects of the cephamycin C-clavulanic acid cluster regulator CcaR on global regulation. Microb Biotechnol 7: 221- 231.
  • Baggaley KH,  Brown AG,  Schofield CJ (1997). Chemistry and biosynthesis of clavulanic acid and other clavams. Nat Prod Rep 4: 309-333.
  • Baltz RH (2011). Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotechnol 38: 657-666.
  • Baños S,  Pérez-Redondo R,  Koekman B,  Liras P (2009). Glycerol utilization gene cluster in Streptomyces clavuligerus. Appl Environ Microbiol. 75: 2991-2995.
  • Bekker V, Dodd A,Brady D, RumboldK (2014). Tools for metabolic engineering in Streptomyces. Bioengineered 5: 293-299.
  • Bentley PH, Berry PD, Brooks G, Gilpin ML, Hunt E, Zomaya II (1977). Total synthesis of (±)-clavulanic acid. J Chem Soc Chem Commun 748-749.
  • Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43- 49.
  • Bro C, Nielsen J (2004). Impact of ‘ome’ analyses on inverse metabolic engineering. Metab Eng 6: 204-211.
  • Burton K (1968). Determination of DNA concentration with diphenylamine. Methods Enzymol 12: 163-166.
  • Chen Y, Yin M, Horsman GP, Huang S, Shen B (2010). Manipulation of pathway regulation in  Streptomyces globisporus  for overproduction of the enediyne antitumor antibiotic C-1027. J Antibiot 63: 482-485.
  • Demain AL, Dana CA (2007). The business of biotechnology. Industrial Biotechnology 3: 269-283.
  • Ferguson NL, Peña-Castillo L, Moore MA, Bignell DRD, Tahlan K (2016). Proteomics analysis of global regulatory cascades involved in clavulanic acid production and morphological development in Streptomyces clavuligerus. J Ind Microbiol Biotechnol 43: 537-555.
  • Flett F, Mersinias V, Smith CP (1997). High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155: 223-229.
  • Fong R, Hu Z, Hutchinson CR, Huang J, Cohen S, Kao C (2007). Characterization of a large, stable, high-copy-number Streptomyces plasmid that requires stability and transfer functions for heterologous polyketide overproduction. Appl Environ Microbiol 73: 1296-1307.
  • Foulstone M, Reading C (1982). Assay of amoxicillin and clavulanic acid, the components of Augmentin, in biological fluids with high-performance liquid chromatography. Antimicrob Agents Chemother 22: 753-762.
  • Guo DK, Zhao YB, Yang KQ (2013). Coordination of glycerol utilization and clavulanic acid biosynthesis to improve clavulanic acid production in Streptomyces clavuligerus. S c i China Life Sci 56: 591-600.
  • Hobbs G, Frazer M, Gardner DCJ, Cullum JA, Oliver SG (1989). Dispersed growth of Streptomyces in liquid culture. Appl Microbiol Biotechnol 31: 272-277.
  • Hung TV, Malla S, Park BC, Liou K, Lee HC, Sohng JK (2007). Enhancement of clavulanic acid by replicative and integrative expression of ccaR and cas2 in Streptomyces clavuligerus NRRL3585. J Microbiol Biotechnol 17: 1538-1545.
  • Hwang KS, Kim HU, Charusanti P, Palsson BØ, Lee SY (2014). Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 32: 255-268.
  • Jiang SJ, Yang YY, Wang HQ (2004). Optimization of clavulanic acid fermentation. Chi J Antibiot 6: 335-733.
  • Jnawali NH, Lee, HC, Shong JK (2010a). Enhancement of clavulanic acid production by expressing regulatory genes in gap gene deletion mutant of Streptomyces clavuligerus NRRL3585. J Microbiol 20: 146-152.
  • Jnawali NH, Yoo JC, Jae KS (2010b). Improvement of clavulanic acid production in Streptomyces clavuligerus by genetic manipulation of structural biosynthesis genes. Biotechnol Lett 33: 1221-1226.
  • Kieser R, Melton TE (1988). Plasmid pIJ699, a multi-copy positiveselection vector for Streptomyces. Gene 65: 83-91.
  • Kurt A, Álvarez-Álvarez R, Liras P, Özcengiz G (2013). Role of the cmcH-ccaR intergenic region and ccaR overexpression in cephamycin C biosynthesis in Streptomyces clavuligerus. Appl Microbiol Biotechnol 97: 5869-5880.
  • Li R, Townsend CA (2006). Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab Eng 8: 240-252.
  • Liras P, Gomez-Escribano JP, Santamarta I (2008). Regulatory mechanisms controlling antibiotic production in Streptomyces clavuligerus. J Ind Microbiol Biotechnol 35: 667-676.
  • López-García MT, Santamarta I, Liras P (2010). Morphological differentiation and clavulanic acid formation are affected in a Streptomyces clavuligerus adpA deleted mutant. Microbiology 156: 2354-2365.
  • Medema MH, Alam MT, Heijne WHM, van den Berg MA, Muller U, Trefzer A, Bovenberg RAL, Breitling R, Takano E (2011a). Genome-wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus. Microb Biotechnol 4: 300-305.
  • Medema MH, Breitling R, Takano E (2011b). Synthetic biology in Streptomyces bacteria. In: Methods in Enzymology, Synthetic Biology, Part A. Cambridge, MA, USA: Academic Press, pp. 485-502.
  • Medema MH, Trefzer A, Kovalchuk A, Van den Berg M, Muller U, Heijne W, Wu L, Alam MT, Ronning CM, Nierman WC et al. (2010). The sequence of a 1.8-Mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol 2: 212-224.
  • Nielsen J, Eliasson A, Borodina I (2009). Metabolic engineering of Streptomyces. In: Smolke CD, editor. The Metabolic Pathway Engineering Handbook: Fundamentals. Boca Raton, FL: CRC Press.
  • Olano C, Lombo F, Mendez C, Salas JA (2008). Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10: 281-292.
  • Özcengiz G, Demain AL (2013). Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 31: 287-311.
  • Paradkar AS, Mosher RH, Anders C, Griffin A, Griffin J, Hughes C, Greaves P (2001). Applications of gene replacement technology to Streptomyces clavuligerus strain development for clavulanic acid production. Appl Environ Microbiol 67: 2292-2297.
  • Paradkar A (2013). Clavulanic acid production by Streptomyces clavuligerus. J Antibiotics 66: 411-420.
  • Patnaik R (2008). Engineering complex phenotypes in industrial strains. Biotechnol Prog 24: 38-47.
  • Pérez-Llarena FJ, Liras P, Rodríguez-García A, Martín JF (1997). A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both β-lactam compounds. J Bacteriol 179: 2053-2059.
  • Pérez-Redondo R, Rodríguez-García A, Martín JF, Liras P (1998). The claR gene of Streptomyces clavuligerus, encoding a LysR-type regulatory protein controlling clavulanic acid biosynthesis, is linked to the clavulanate-9-aldehyde reductase (car)gene. Gene 211: 311-321.
  • Pickens LB, Tang Y, Choo YH (2011). Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2: 211-236.
  • Pospiech A, Neumann B (1995). A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 11: 217-218.
  • Rodriguez E, Hu Z, Ou S, Volchegursky Y, Hutchinson CR, McDaniel R (2003). Rapid engineering of polyketide overproduction by gene transfer to industrially optimized strains. J Ind Microbiol Biotechnol 30: 480-488.
  • Romero J, Liras P, Martin JF (1984). Dissociation of cephamycin and CA biosynthesis in Streptomyces clavuligerus. Appl Microbiol Biotechnol 20: 318-325.
  • Santamarta I, López-García MT, Kurt A, Nárdiz N, Álvarez-Álvarez R, Pérez-Redondo R. Martín JF, Liras P (2011). Characterization of DNA-binding sequences for CcaR in the cephamycin– clavulanic acid supercluster of Streptomyces clavuligerus. Mol Microbiol 81: 968-981.
  • Song JY, Kim ES, Kim DW, Jensen SE, Lee KJ (2009). A gene located downstream of the clavulanic acid gene cluster in Streptomyces clavuligerus ATCC 27064 encodes a putative response regulator that affects clavulanic acid production. J Ind Microbiol Biotechnol 36: 301-311.
  • Ünsaldı E, Kurt-Kızıldoğan A, Voigt B, Becher D, Özcengiz G (2016). Proteome-wide alterations in an industrial clavulanic acid producing strain of Streptomyces clavuligerus. Synth Syst Biotechnol (in press).
  • Ward JM, Hodgson JE (1993). The biosynthetic genes for clavulanic acid and cephamycin production occurs as a supercluster in three Streptomyces. FEMS Microbiol Lett 110: 239-242.
  • Wilkinson CJ, Hughes-Thomas ZA, Martin CJ, Bohm I, Mironenko T, Deacon M, Wheatcroft M, Wirtz G, Staunton J, Leadlay PF (2002). Increasing the efficiency of heterologous promoters in Actinomycetes. J Mol Microbiol Biotechnol 4: 417-426.