Biocompatible polymeric coatings do not inherently reduce the cytotoxicity of iron oxide nanoparticles

Biocompatible polymeric coatings do not inherently reduce the cytotoxicity of iron oxide nanoparticles

Nanotechnology in biomedical research is an emerging and promising tool for different purposes, like high-resolution medical imaging, diagnostics, and targeted drug delivery. Although some experimental efforts focused on determination of the cytotoxicity of nanoparticles (NPs) are present, there are many controversial results. In this study, chitosan (CS)- and poly(acrylic acid) (PAA)-coated iron oxide nanoparticles (IONPs) were used to investigate the possible cytotoxicity of coated IONPs on model mammalian cell line SaOs-2 by evaluating cellular viability and membrane integrity. Increasing concentrations of IONPs increased the cytotoxic effect on SaOs-2 cells with both CS- and PAA-coated IONPs. Cell viability on day 3 was as low as 40% and 48% at 1000 µM concentration for PAAand CS-coated IONPs, respectively, in 1% FBS-supplemented media. Cytotoxicity determined by the released lactate dehydrogenase (LDH) was as high as 163% with 1000 µM concentration of CS-IONPs, while there was no significant change in LDH release with PAAcoated IONPs at any concentration. This study reveals that IONPs coated with a biocompatible polymer, which are usually assumed to be nontoxic, show cytotoxicity with increasing concentration and incubation time. The cytotoxicity of nanoparticles intended for biomedical purposes must be evaluated using more than one approach.

___

  • Ankamwar B, Lai T, Huang J, Liu R, Hsiao M, Chen CH, Hwu Y (2010). Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 21: 075102.
  • Au JL, Yeung BZ, Wientjes MG, Lu Z, Wientjes MG (2016). Delivery of cancer therapeutics to extracellular and intracellular targets: determinants, barriers, challenges and opportunities. Adv Drug Deliver Rev 97: 280-301.
  • Bahring F, Schlenk F, Wotschadlo J, Buske N, Liebert T, Bergemann C, Heinze T, Hochhaus A, Fischer D, Clement JH (2013). Suitability of viability assays for testing biological effects of coated superparamagnetic nanoparticles. IEEE T Magn 49: 383-388.
  • Bao Y, Wen T, Samia ACS, Khandhar A, Krishnan KM (2016). Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J Mater Sci 51: 513-553.
  • Bayir E, Bilgi E, Urkmez AS (2014). Implementation of nanoparticles in cancer therapy. In: Bououdina M, editor. Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials. 1st ed. Hershey, PA, USA: IGI Global, p. 447-491.
  • Bhattarai N, Gunn J, Zhang M (2010). Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliver Rev 62: 83-99.
  • Calatayud MP, Sanz B, Raffa V, Riggio C, Ibarra MR, Goya GF (2014). The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake. Biomaterials 35: 6389-6399.
  • Carvalho SM, Mansur HS, Ramanery FP, Mansur AAP, Lobato ZIP, Leite MF (2016). Cytotoxicity investigation of luminescent nanohybrids based on chitosan and carboxymethyl chitosan conjugated with Bi2S3 quantum dots for biomedical applications. Toxicol Res 5: 1017-1028.
  • Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR, Gil MH (2010). Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA J 1: 164-209.
  • Dass CR, Friedhuber AM, Khachigian LM, Dunstan DE, Choong PF (2008). Biocompatible chitosan-DNAzyme nanoparticle exhibits enhanced biological activity. J Microencapsul 25: 421- 425.
  • Fang C, Zhang M (2009). Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem 19: 6258-6266.
  • Frohlich E (2012). The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7: 5577- 5591.
  • Frohlich E, Meindl C, Roblegg E, Griesbacher A, Pieber TR (2012). Cytotoxicity of nanoparticles is influenced by size, proliferation and embryonic origin of the cells used for testing. Nanotoxicology 6: 424-439.
  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004). Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem 15: 897-900.
  • Grabowski N, Hillaireau H, Vergnaud J, Tsapis N, Pallardy M, Kerdine-Römer S, Fattal E (2015). Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages. Int J Pharm 482: 75-83.
  • Gudovan D, Balaure PC, Eduard Mihaiescu D, Fudulu A, Radu M (2015). Functionalized magnetic nanoparticles for biomedical applications. Curr Pharm Design 21: 6038-6054.
  • Gupta AK, Gupta M (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26: 3995-4021.
  • Hong S, Chang Y, Rhee I (2010). Chitosan-coated ferrite (Fe3 O4)nanoparticles as a T2 contrast agent for magnetic resonance imaging. J Korean Phys Soc 56: 868-873.
  • Huang Q, Shen W, Xu Q, Tan R, Song W (2014). Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity. Mater Chem Phys 147: 550-556.
  • Hussain S, Hess K, Gearhart J, Geiss K, Schlager J (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19: 975-983.
  • Hussain SM, Braydich-Stolle LK, Schrand AM, Murdock RC, Yu KO, Mattie DM, Schlager JJ, Terrones M (2009). Toxicity evaluation for safe use of nanomaterials: Recent achievements and technical challenges. Adv Mater 21: 1549-1559.
  • Hwang TL, Aljuffali IA, Lin CF, Chang YT, Fang JY (2015). Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: Lipid nanoparticles versus polymeric nanoparticles. Int J Nanomed 10: 371.
  • Jeong S, Song HC, Lee WW, Choi Y, Lee SS, Ryu BH (2010). Combined role of well-dispersed aqueous Ag ink and the molecular adhesive layer in inkjet printing the narrow and highly conductive Ag features on a glass substrate. J Phys Chem C 114: 22277-22283.
  • Kadajji VG, Betageri GV (2011). Water soluble polymers for pharmaceutical applications. Polymers 3: 1972-2009.
  • Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra BD (2008). Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens Bioelectron 24: 676-683.
  • Kim SK (2013) Chitin and Chitosan Derivatives: Advances in Drug Discovery and Developments. Boca Raton, FL, USA: CRC Press.
  • Kim ST, Saha K, Kim C, Rotello VM (2013). The role of surface functionality in determining nanoparticle cytotoxicity. Accounts Chem Res 46: 681-691.
  • Küçükdermenci S, Kutluay D, Avgın İ (2013). Synthesis of a Fe3O4/ PAA-based magnetic fluid for faraday-rotation measurements. Mater Tehnol 47: 71-78.
  • Lauvrak SU, Munthe E, Kresse SH, Stratford EW, Namlos HM, MezaZepeda LA, Myklebost O (2013). Functional characterisation of osteosarcoma cell lines and identification of mRNAs and miRNAs associated with aggressive cancer phenotypes. Brit J Cancer 109: 2228-2236.
  • Li GY, Jiang YR, Huang KL, Ding P, Chen J (2008). Preparation and properties of magnetic Fe3 O4–chitosan nanoparticles. J Alloy Compd 466: 451-456.
  • Li X, Kong X, Zhang Z, Nan K, Li L, Wang X, Chen H (2012). Cytotoxicity and biocompatibility evaluation of N,Ocarboxymethyl chitosan/oxidized alginate hydrogel for drug delivery application. Int J Biol Macromol 50: 1299-1305.
  • Li Y, Gu N (2010). Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study. J Phys Chem B 114: 2749-2754.
  • Lin J, Zhang H, Chen Z, Zheng Y (2010). Penetration of lipid membranes by gold nanoparticles: Insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4: 5421-5429.
  • Ling D, Hyeon T (2013). Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9: 1450- 1466.
  • Liu X, Huang N, Li H, Jin Q, Ji J (2013). Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir 29: 9138-9148.
  • Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman MZA, Amin J (2013). Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18: 7533- 7548.
  • Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M (2011a). Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5: 7263-7276.
  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011b). Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliver Rev 63: 24-46.
  • Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Häfeli UO, Stroeve P (2010). A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloid Surface B 75: 300-309.
  • Mansur AA, de Carvalho SM, Mansur HS (2016). Bioengineered quantum dot/chitosan-tripeptide nanoconjugates for targeting the receptors of cancer cells. Int J Biol Macromol 82: 780-789.
  • Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M (2004). Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20: 2472-2477.
  • Mohseny AB, Machado I, Cai Y, Schaefer KL, Serra M, Hogendoorn PC, Llombart-Bosch A, Cleton-Jansen AM (2011). Functional characterization of osteosarcoma cell lines provides representative models to study the human disease. Lab Invest 91: 1195-1205.
  • Morton SW, Shah NJ, Quadir MA, Deng ZJ, Poon Z, Hammond PT (2014). Osteotropic therapy via targeted layer-by-layer nanoparticles. Adv Healthc Mater 3: 867-875.
  • Mura S, Hillaireau H, Nicolas J, Le Droumaguet B, Gueutin C, Zanna S, Tsapis N, Fattal E (2011). Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int J Nanomed 6: 2591-2605.
  • Nafee N, Schneider M, Schaefer UF, Lehr CM (2009). Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int J Pharm 381: 130-139.
  • Petri-Fink A, Chastellain M, Juillerat-Jeanneret L, Ferrari A, Hofmann H (2005). Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 26: 2685-2694.
  • Qin YG, Zhu LY, Wang CY, Zhang BY, Wang QY, Li RY, Liu Z (2015). Glycol chitosan incorporated retinoic acid chlorochalcone (RACC) nanoparticles in the treatment of osteosarcoma. Lipids Health Dis 14: 70.
  • Schulze C, Schulze C, Kroll A, Schulze C, Kroll A, Lehr CM, Schäfer UF, Becker K, Schnekenburger J, Schulze Isfort C et al. (2009). Not ready to use – overcoming pitfalls when dispersing nanoparticles in physiological media. Nanotoxicology 2: 51-61.
  • Shen Z, Duan H, Frey H (2007). Water-soluble fluorescent Ag nanoclusters obtained from multiarm star poly(acrylic acid) as “molecular hydrogel” templates. Adv Mater 19: 349-352.
  • Soenen SJ, Himmelreich U, Nuytten N, De Cuyper M (2011). Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials 32: 195-205.
  • Soenen SJ, Nuytten N, De Meyer SF, De Smedt SC, De Cuyper M (2010). High intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton and focal adhesion kinase-mediated signaling. Small 6: 832-842.
  • Susa M, Iyer AK, Ryu K, Hornicek FJ, Mankin H, Amiji MM, Duan Z (2009). Doxorubicin loaded polymeric nanoparticulate delivery system to overcome drug resistance in osteosarcoma. BMC Cancer 9: 399.
  • Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C et al. (2013). Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8: 772-781.
  • Tripathi SK, Ahmadi Z, Gupta KC, Kumar P (2016). Polyethyleniminepolyacrylic acid nanocomposites: type of bonding does influence the gene transfer efficacy and cytotoxicity. Colloid Surface B 140: 117-120.
  • Ucar S, Ermis M, Hasirci N (2016). Modified chitosan scaffolds: proliferative, cytotoxic, apoptotic, and necrotic effects on SaOs-2 cells and antimicrobial effect on Escherichia coli. J Bioact Compat Pol 31: 304-319.
  • Van der Valk J, Brunner D, De Smet K, Fex Svenningsen Å, Honegger P, Knudsen LE, Lindl T, Noraberg J, Price A, Scarino ML et al. (2010). Optimization of chemically defined cell culture media – replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 24: 1053-1063.
  • Wahajuddin SA (2012). Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed 7: 3445.
  • Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR, Wang SL (2011). Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomed 6: 765-774.
  • Xu Y, Sherwood JA, Lackey KH, Qin Y, Bao Y (2016). The responses of immune cells to iron oxide nanoparticles. J App Toxicol 36: 543-553.
  • Zhang X, Lu X, Geng W, Qu G, Zhou Z, Jiang L, Li Y, Chen X, Nie L (2015). Role of glycol chitosan-incorporated ursolic acid nanoparticles in the treatment of osteosarcoma. Trop J Pharm Res 14: 1581-1588.