SOS Yolağından Sorumlu Arabidopsis Mutantlarının Tuz Stresi Altındaki Hassasiyetlerinin Karşılaştırılması

Tuz stresi bitkilerde önemli fizyolojik ve metabolik değişimlere yol açarak bitki büyüme ve gelişimini olumsuz şekilde etkileyen, ürün kalitesinin ve miktarının azalmasına neden olan en önemli ve yaygın abiyotik stres faktörlerinden birisidir. Tuz stres toleransı ile ilgili moleküler kontrol mekanizmalarının aydınlatılması stres ile ilişkili çeşitli genlerin aktivasyonu ve/veya inaktivasyonuna dayanmaktadır. Tuz stresi altında Salt Overly Sensitive (SOS) mekanizması bitkinin tuza toleransı açısından büyük önem taşımaktadır. Her ne kadar bu mekanizma uzun yılalrdır çalışılmış olsa da, yolakta yer alan genlerin mutasyonu sonucunda elde edilen bitkilerin farklı sodyum klorür (NaCl) seviyelerine karşı gelişim süresince vermiş oldukları fizyolojik değişiklikler karşılaştırmalı olarak incelenmemiştir. Arabidopsis thaliana’da yaptığımız bu çalışmada, sos1-1 mutant bitkisinin 10 mM NaCl uygulamasına hassasiyet gösterirken sos3-1 ve hkt1-1 mutant bitkilerinin ise dayanıklılık gösterdiği; 50 mM NaCl ve üstü konsantrasyonlarda ise sos1-1, sos3-1 ve hkt1-1 mutant bitkilerinin hassas olduğu belirlenmiştir. Ayrıca 1 gün stres uygulanan bitkiler çok hassas değilken, stresin 3 veya 4 gün devam etmesi sonucunda bitkilerin kök uzunluğunda belirgin etkilenme gözlemlenmiştir. Kısa süreli ve düşük seviyede NaCl uygulanan Col-0, hkt1-1 ve sos3-1 köklerinin gelişiminin pozitif yönde etkilendiği bulunmuştur. Bu sonuçlar ışığında Arabidopsis thaliana’nın tuz stresine karşı göstermiş olduğu tepkilerin detaylı incelenmesi ve moleküler tolerans yolaklarının belirlenmesinde tuz stres miktarı ve süresinin ne kadar önemli olduğu belirlenmiştir.

Comparison of the Sensitivity of Arabidopsis SOS Pathway Mutants under Salt Stress

Salinity stress is one of the most important and common abiotic stress factors that cause significant physiological and metabolic changes in plants, negatively affecting plant growth and development, and causing decrease in product quality and quantity. The elucidation of the molecular control mechanisms associated with salt stress tolerance is based on the activation and /or inactivation of various stress-related genes. Salt Overly Sensitive (SOS) tolerance mechanism under salt stress is of great importance in terms of salt tolerance of the plants. Although this mechanism has been studied for many years, the physiological changes that the plants give as a result of mutation of the genes in the pathway under different levels of sodium chloride (NaCl) during development have not been examined comparatively. In this study, we found that the Arabidopsis thaliana sos1-1 mutant plant showed sensitivity to 10 mM NaCl while the sos3-1 and hkt1-1 mutants showed tolerance. The sos1- 1, sos3-1 and hkt1-1 mutants showed increasing sensitivity when NaCl was applied beyon 50 mM of concentration. In addition, plants did not show significant sensitivity for 1 day of stress application, while significant effects were observed in plant root length when exposed to salinity for 3 to 4 days. Col-0, hkt1-1 and sos3-1 roots treated with low levels of NaCl for a short term were positively affected in length. In the light of these results, the amount and duration of salt stress is very critical in Arabidopsis thaliana's responses to the stress and determination of molecular tolerance pathways.

___

  • Aksoy E, Jeong IS, Koiwa H. 2013. Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level. Plant Physiol. 161(1): 330-345.
  • Alqahtani M, Roy SJ, Tester M. 2019. Increasing Salinity Tolerance of Crops. In: Savin R., Slafer G. (eds) Crop Science. Encyclopedia of Sustainability Science and Technology Series. 245-267. Springer, New York, NY.
  • Ashraf M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants. 199: 361-376.
  • Barrero JM, Dorr MM, Talbot MJ, Ishikawa S, Umezawa T, White RG, Gubler F. 2019. A role for PM19-Like 1 in seed dormancy in Arabidopsis. Seed Sci. Res. 1-13.
  • Bernstein N. 2019. Plants and salt: Plant response and adaptations to salinity. In Seckbach J, Rampelotto P. (eds) Model Ecosystems in Extreme Environments. 101-112. Academic Press.
  • Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P. 2011. Salinity stress and salt tolerance. In Shanker A, Venkateswarlu B. Abiotic Stress in Plants-Mechanisms and Adaptations. Biochemistry. Genetics and Molecular Biology. InTechOpen. 978:953-307-394.
  • Çulha Ş, Çakırlar H. 2011. Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe University Journal of Sciences. 021002: 11-34.
  • Dhankher, OP, Foyer CH. 2018. Climate resilient crops for improving global food security and safety. Plant Cell. Environ. 41(5): 877-884.
  • Emine E, Apan M, Kara T. 2005. Tuzluluğun bitki gelişimine etkisi. J. of Fac. of Agric. OMU. 20: 118-125.
  • Gong D, Guo Y, Schumaker KS, Zhu JK. 2004. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiol. 134(3): 919-926.
  • Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J Genomics. 701596: 18.
  • Hajiboland R, Joudmand A, Fotouhi K. 2009. Mild salinity improves sugar beet (Beta vulgaris L.) quality. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 59(4): 295-305.
  • Halfter U, Ishitani M, Zhu JK. 2000. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci U S A, 97(7): 3735-3740.
  • Hossain S. 2019. Present scenario of global salt affected soils, its management and importance of salinity research. Int. J. Biol. Sci., 1(1): 13.
  • Hussain S, Shaukat M, Ashraf M, Zhu C, Jin Q, Zhang J. 2019. Salinity Stress in Arid and Semi-Arid Climates: Effects and Management in Field Crops. In Hussain S., Shaukat M., Ashraf M., Zhu C., Jin Q, Zhang J. Climate Change and Agriculture. IntechOpen.
  • Isayenkov SV, Maathuis FJ. 2019. Plant Salinity Stress: Many Unanswered Questions Remain. Front. Plant Sci. 10: 80.
  • Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK. 2000. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. The Plant Cell, 12(9): 1667-1677.
  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X. 2013. The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol. Plant, 6(2): 275-286.
  • Jiang Z, Zhu S, Ye R, Xue Y, Chen A, An L, Pei ZM. 2013. Relationship between NaCl-and H2O2-induced cytosolic Ca2+ increases in response to stress in Arabidopsis. PloS one 8(10): e76130.
  • Krysan PJ, Young JC, Sussman MR. 1999. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell, 11(12): 2283- 2290.
  • Kuşvuran Ş. 2010. Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Adana.
  • Liang W, Ma X, Wan P, Liu L. 2018. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun., 495(1): 286-291.
  • Lin H, Yang Y, Quan R, Mendoza I, Wu Y, Du W, Zhao S, Schumaker KS, Pardo JM, Guo Y. 2009. Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell, 21(5): 1607-1619.
  • Liu J, Zhu JK. 1997. An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc. Natl. Acad. Sci. U S A, 94(26): 14960-14964.
  • Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. U S A, 97(7): 3730-3734.
  • Mahajan S, Pandey GK, Tuteja N. 2008. Calcium-and salt-stress signaling in plants: shedding light on SOS pathway. Arch. Biochem. Biophys., 471(2): 146-158.
  • Munns R. 2002. Comparative physiology of salt and water stress. Plant Cell. Environ. 25:239-250.
  • Munns R, Gilliham M. 2015. Salinity tolerance of crops–what is the cost?. New Phytol., 208(3): 668-673.
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59: 651-681.
  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant., 15(3): 473-497.
  • Parida AK, Das AB. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60: 324-349.
  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK. 2002. Regulation of SOS1, a plasma membrane Na+ /H+exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. U S A, 99(12): 8436-8441.
  • Qiu QS, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu JK. 2004. Regulation of vacuolar Na+ /H+exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J. Biol. Chem., 279(1): 207-215.
  • Quan R, Wang J, Yang D, Zhang H, Zhang Z, Huang R. 2017. EIN3 and SOS2 synergistically modulate plant salt tolerance. Sci. Rep., 7: 44637.
  • Quesada V, Ponce MR, Micol JL. 2000. Genetic analysis of salttolerant mutants in Arabidopsis thaliana. Genetics, 154(1): 421-436.
  • Roy SJ, Negrão S, Tester M. 2014. Salt resistant crop plants. Curr. Open Biotech., 26: 115-124.
  • Rus A, Lee BH, Muñoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM. 2004. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol., 136(1): 2500-2511.
  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM. 2001. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc. Natl. Acad. Sci. U S A, 98(24): 14150-14155.
  • Sánchez-Barrena MJ, Martínez-Ripoll M, Zhu JK, Albert A. 2005. The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J. Mol. Biol., 345(5): 1253-1264.
  • Shi H, Ishitani M, Kim C, Zhu JK. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+ /H+antiporter. Proc. Natl. Acad. Sci. U S A, 97(12): 6896-6901.
  • Shi H, Quintero FJ, Pardo JM, Zhu JK. 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+transport in plants. Plant Cell, 14(2): 465-477.
  • Strasser B, Sánchez-Lamas M, Yanovsky MJ, Casal JJ, Cerdán PD. 2010. Arabidopsis thaliana life without phytochromes. Proc. Natl. Acad. Sci. U S A, 107(10): 4776-4781.
  • Tuteja N. 2007. Mechanisms of high salinity tolerance in plants. In Methods in enzymology (Vol. 428, pp. 419-438). Academic Press.
  • Türkan I, Demiral T. 2009. Recent developments in understanding salinity tolerance. Environ. Exper. Bot., 67(1): 2-9.
  • Wang Y, Yang L, Zheng Z, Grumet R, Loescher W, Zhu JK, Yang P, Hu Y, Chan Z. 2013. Transcriptomic and physiological variations of three Arabidopsis ecotypes in response to salt stress. PloS one, 8(7): e69036.
  • Wu SJ, Ding L, Zhu JK. 1996. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 8(4): 617-627.
  • Yokoi S, Bressan RA, Hasegawa PM. 2002. Salt stress tolerance of plants. JIRCAS working report, 23(1): 25-33.
  • Zhu JK. 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol., 124(3): 941-948.
  • Zhu JK, Liu J, Xiong L. 1998. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell, 10(7): 1181-1191.
  • Zolla G, Heimer YM, Barak S. 2009. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. J. Exp. Bot., 61(1): 211-224.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)