Yapay Aydınlatmalı Mini Bitki Fabrikası Tasarımı ve Çevre Koşulları Kontrol Sistemi Uygulaması

Hızla artan nüfus ve kentleşme nedeniyle tarım arazileri küçülmektedir. Bununla birlikte çevre sorunları ve kirlilik de sürekli artmaktadır. Bu durum tarımsal üretim ve gıda erişimi için bir tehdit oluşturmaktadır. Bu tehditlerin aşılması amacıyla bitki fabrikası olarak adlandırılan tam kontrollü kapalı ortam üretim sistemlerinin kullanımı yaygınlaşmaktadır. Bitki fabrikalarında bitki besleme yönetimi ve çevre koşullarının izlenmesi oldukça önemlidir. Bitkisel üretim ortamları çevre koşulları açısından hassastır. Bu nedenle iklim koşullarının doğru olarak sağlanabilmesi için ölçümlerinde de hassasiyetle yapılması gerekir. Bu amaçla tasarlanmış kontrol sistemlerinin yüksek maliyetleri, üreticiler için bir sorun teşkil etmektedir. Bu çalışmada, bir mini bitki fabrikası prototipi ile açık kaynak donanım ve yazılım kullanılarak geliştirilen kontrol sisteminin tasarımı sunulmuştur. Ayrıca düşük maliyetli algılayıcılarla ölçülen sıcaklık, nispi nem ve ışık referans cihazlarla karşılaştırılarak sistemin performansı ve kararlılığı araştırılmıştır.

The Design of a Mini Plant Factory with Artificial Lighting and Application of Environmental Conditions Control System

Due to rapidly increasing population and urbanization, agricultural lands are shrinking. However, environmental problems and pollution are constantly increasing. This poses a threat to agricultural production and food access. In order to overcome these threats, the use of fully controlled indoor production systems called plant factory is becoming widespread. The management of plant nutrition and monitor of environmental conditions is very important for production in the plant factory. Plant production is sensitive to environmental conditions. For this reason, it is necessary to make accurate measurements in order to ensure the correct climatic conditions. The high cost of control systems designed for this purpose is a problem for producers. In this study, a mini plant factory prototype and control system are presented which is developed by using open source hardware and software. In addition, the temperature, relative humidity and light measured by the low-cost sensors were compared with the reference devices and the system performance and stability were investigated.

___

  • Adenle AA, Sowe SK, Parayil G, Aginam O. 2012. Analysis of open source biotechnology in developing countries: An emerging framework for sustainable agriculture. Technology in Society, 34, 256-269. doi: https://doi.org/10.1016 /j.techsoc.2012.07.004
  • Anpo M, Fukuda H, Wada T. 2019. Artificial light-type plant factories outline and a vision for the future (introduction). In M. Anpo, H. Fukuda T. Wada (Eds.), Plant factory using artificial light.(1st ed., Vol. 1, pp. xxiii-xxviii). Elsevier: Elsevier.
  • Apogee. 2019. Ppfd to lux conversion. Erişim Adresi: https://www.apogeeinstruments.com/conversion-ppfd-tolux/ [Erişim: 01.06.2019, 2019].
  • Benis K, Reinhart C, Ferrão P. 2017. Development of a simulation-based decision support workflow for the implementation of building-integrated agriculture (bia) in urban contexts. Journal of Cleaner Production, 147, 589-602. doi: https://doi.org/10.1016/j.jclepro.2017.01.130
  • Bosch. 2019. Bosch sensortec technical data. Erişim Adresi:https://www.bosch-sensortec.com/bst/products /all_products/bme280 [Erişim: 01.06.2019, 2019].
  • Bradley P, Marulanda C. 2000. Simplified hydroponics to reduce global hunger. Paper presented at the World Congress on Soilless Culture: Agriculture in the Coming Millennium, Leuven, Belgium.
  • Chen W-T, Yeh Y-HF, Liu T-Y, Lin T-T. 2013. An automatic plant growth measurement system for plant factory. IFAC Proceedings Volumes, 46, 323-327. doi: https://doi.org /10.3182/20130327-3-JP-3017.00073
  • Çaylı A. 2019. Internet of things and agricultural applications. Paper presented at the 3rd International Symposium on Innovative Approaches in Scientific Studies (Engineering and Natural Sciences), Ankara, Turkey.
  • Çaylı A, Akyüz A, Baytorun AN, Boyacı S, Üstün S, Kozak FB. 2017. Control of greenhouse environmental conditions with iot based monitoring and analysis system. Turkish Journal of Agriculture-Food Science and Technology, 5, 1279-1289. doi: 10.24925/turjaf.v5i11.1279-1289.1282
  • Çaylı A, Akyüz A, Baytorun AN, Üstün S, Mercanlı AS. 2018. The feasibility of a cloud-based low-cost environmental monitoring system via open source hardware in greenhouses. KSU J. Agric Nat, 21, 323-338. doi: 10.18016/ksudobil. 341513
  • Dorais M. 2003. The use of supplemental lighting for vegetable crop production: Light intensity, crop response, nutrition, crop management, cultural practices. Paper presented at the Canadian Greenhouse Conference.
  • Hang T, Lu N, Takagaki M, Mao H. 2019. Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce grown in mini-plant factories under different light cycles. Scientia Horticulturae, 252, 113-120. doi: https://doi.org/10.1016/j.scienta.2019.03.057
  • Hendrawan Y, Riza DFA, Murase H. 2014. Applications of intelligent machine vision in plant factory. IFAC Proceedings Volumes, 47, 8122-8127. doi: https://doi.org/10.3182 /20140824-6-ZA-1003.01099
  • Jiang J-s, Kim H-J, Cho W-J. 2018. On-the-go image processing system for spatial mapping of lettuce fresh weight in plant factory. IFAC-PapersOnLine, 51, 130-134. doi: https://doi.org/ 10.1016/j.ifacol.2018.08.075
  • Katayama N. 2013. Utilization of the plant waste in the water culture plant factory. IFAC Proceedings Volumes, 46, 75-76. doi: https://doi.org/10.3182/20130327-3-JP-3017.00020
  • Kim Choi EG, Baek GY, Kim CH, Jink BO, Moon BE, Kim HT. 2013. Lettuce growth prediction in plant factory using image processing technology. IFAC Proceedings Volumes, 46, 156- 159. doi: https://doi.org/10.3182/20130327-3-JP-3017.00036
  • Kim Lee C, Yun YS, Hong CH, Choi YE. 2019. Recycling waste nutrient solution originating from the plant factory with the cultivation of newly isolated acutodesmus species. J Biotechnol, 289, 15-25. doi: 10.1016/j.jbiotec.2018.10.010
  • Kozai T. 2013. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proceedings of the Japan Academy, Series B, 89, 447-461. doi: 10.2183/pjab.89.447
  • Kozai T, Niu G. 2016. Plant factory: An indoor vertical farming system for efficient quality food production. In T. Kozai, G. Niu M. Takagaki (Eds.), Plant factory.(pp. 3-5). San Diego: Academic Press.
  • Maria DB. 2019. The mariadb foundation (non-profit foundation). Erişim Adresi: https://mariadb.org/ [Erişim: 01.06.2019].
  • Nakamura K. 2019. Development of efficient production system. In M. Anpo, H. Fukuda T. Wada (Eds.), Plant factory using artificial light. (Vol. 1, pp. 171-176). Elsevier: Elsevier.
  • Niu G, Kozai T, Sabeh N. 2016. Physical environmental factors and their properties. In T. Kozai, G. Niu M. Takagaki (Eds.), Plant factory.(Vol. 1, pp. 129-140). San Diego: Academic Press.
  • OSHWA. 2018. Open source hardware association. Erişim Adresi: https://www.oshwa.org/about/ [Erişim: 05.07.2018].
  • Pardossi A, Incrocci L, Salas MC, Gianquinto G. 2017. Managing mineral nutrition in soilless culture Rooftop urban agriculture.(pp. 147-166): Springer.
  • Pearson CJ. 2007. Regenerative, semiclosed systems: A priority for twenty-first-century agriculture. BioScience, 57: 409-418. doi: 10.1641/B570506
  • PHP. 2017. The php group. Erişim Adresi:https://php.net [Erişim: 01.02.2017, 2017].
  • Rosenzweig C, Liverman D. 1992. Predicted effects of climate change on agriculture: A comparison of temperate and tropical regions. Dalam Global Climate Change: Implications, Challenges, and Mitigation Measures. Dalam SK Majumdar (Ed.) The Pennsylvania Academy of Sciences. Pennsylvania, 342-361.
  • Sager JC, McFarlane JC. 1997. Radiation, p. Plant Growth Chamber Handbook, 1-29.
  • Shimizu H, Fukuda K, Nishida Y, Ogura T. 2016. Automated technology in plant factories with artificial lighting (chapter 23). In T. Kozai, G. Niu M. Takagaki (Eds.), Plant factory.(Vol. 1, pp. 313-319). San Diego: Academic Press.
  • Son JE, Kim HJ, Ahn TI. 2016. Hydroponic systems (chapter 17). In T. Kozai, G. Niu M. Takagaki (Eds.), Plant factory.(Vol. 1, pp. 213-221). San Diego: Academic Press.
  • Stallman R. 2015. Free software, free society: Selected essays of richard m. Stallman, third edition. Boston, MA: Free Software Foundation, Inc.
  • Sugano M. 2019. Network and processing system (chapter 5.2 ). In M. Anpo, H. Fukuda T. Wada (Eds.), Plant factory using artificial light.(Vol. 1, pp. 207-210). Elsevier: Elsevier.
  • Zhang Y, Kacira M, An L. 2016. A cfd study on improving air flow uniformity in indoor plant factory system. Biosystems Engineering, 147, 193-205. doi: https://doi.org/10.1016 /j.biosystemseng.2016.04.012
  • Zheng S. 2019. It networks and plant factories (chapter 5.3). In M. Anpo, H. Fukuda T. Wada (Eds.), Plant factory using artificial light.(Vol. 1, pp. 211-226). Elsevier: Elsevier.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)