Mikrokapsüllenen Zeytin Çekirdeği Antioksidan Bileşiklerinin Fiziksel Özelliklerinin Değerlendirilmesi ve Depolama Stabilitesinin Kinetik Modellenmesi

Bu çalışmanın amacı, zeytin çekirdeği antioksidan bileşiklerinden elde edilen mikroenkapsüllerin su aktivitesi, renk, partikül özellikleri, yığın özellikleri ve rekonstitüsyon özelliklerinin belirlenmesi ve mikrokapsüllerin -20°C, 4°C ve 25°C olmak üzere üç farklı sıcaklıkta 6 ay süre ile depolanmasıyla polifenol ve antioksidan içeriğindeki değişimin kinetik modellemeyle incelenmesidir. Mikrokapsüllerin 0,43 su aktivitesi değerine, az kırmızılık içeren parlak açık sarı renge ve homojen olmayan oyuklu partiküllere sahip olduğu gözlenmiştir. Higroskobik (%32,47) ve yüksek kekleşme özelliğine (%61,32) sahip olduğu, ıslanabilirlik (52 dk) ve dağılabilirliğinin (%34,44) düşük olduğu ve uygun yığın yoğunluğu (0,26 g/cm3 ) ve sıkıştırılmış yoğunluk (%0,33 g/cm3 ) değerlerini sergilediği belirlenmiştir. Mikrokapsüllerin akabilirlik (CI:22,65) ve yapışkanlık (HR:1,29) davranışları kabul edilebilir düzeydedir. Ayrıca depolama sonucunda polifenol ve antioksidan içeriğindeki değişimin (yüzey polifenol miktarı ve mikroenkapsülasyon etkinliği hariç) birinci dereceden kinetik modelle en iyi açıklanabildiği bulunmuştur. Her depolama sıcaklığında incelen tüm bileşiklere ait kinetik katsayılar (reaksiyon hız sabiti (k), yarılanma süresi (t1/2) ve Q10 değeri) hesaplanmıştır. Depolama boyunca mikrokapsüllerin polifenol ve antioksidan içeriğindeki korunumun en iyi olduğu sıcaklığın 4°C, en kötü olduğu sıcaklığın ise -20°C olduğu belirlenmiştir. Zeytin çekirdeği antioksidan bileşiklerinden elde edilen mikroenkapsüllerin özellikle 4°C’de depolanan gıdaların hem fonksiyonelliğinin artırılması hem de raf ömrünün uzatılması amacıyla kullanıma uygun olduğu düşünülmektedir.

Evaluation of Physical Properties of Microencapsulated Olive Stone Antioxidants and Kinetic Modelling of Their Storage Stability

The aim of this study was to determine the water activity, color, particle properties, bulk properties and reconstitution properties of microencapsules obtained from olive stone antioxidants, and to investigate the changes in polyphenol and antioxidant contents by kinetics modeling after storage of microcapsules in three different temperatures as -20°C, 4°C and 25°C for 6 months. It was observed that the microcapsules had a water activity value of 0.43, a bright light yellow color with low redness and inhomogeneous hollow particles. It was determined that they had hygroscopic (32.47%) and high caking properties (61.32%), their wettability (52 min) and dispersibility (34.44%) were low and they exhibited suitable bulk (0.26 g/cm3 ) and tapped density (0.33 g/cm3 ) values. The flowability (CI: 22.65) and cohesiveness (HR: 1.29) behaviors of the microcapsules were acceptable. In addition, it was found that the changes in polyphenol and antioxidant contents (except surface polyphenol content and microencapsulation efficiency) during storage were best explained by first-order kinetic model. Kinetic coefficients (reaction rate constant (k), half time (t1/2) and Q10 value) of all compounds examined at each storage temperature were calculated. Preservation of polyphenol and antioxidant contents of microcapsules during storage was found to be best at 4ºC and worst at -20°C. It is thought that microcapsules obtained from olive stone antioxidants are especially suitable for use in order to increase the functionality and extend the shelf life of the foods stored at 4°C.

___

  • Aguiar J, Estevinho BN, Santos L. 2016. Microencapsulation of natural antioxidants for food application–The specific case of coffee antioxidants–A review. Trends Food Sci Technol., 58: 21-39.
  • Aguiar J, Costa R, Rocha F, Estevinho BN, Santos L. 2017. Design of microparticles containing natural antioxidants: Preparation, characterization and controlled release studies. Powder Technol., 313: 287–292.
  • Augustin MA, Hemar Y. 2009. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev., 38: 902–912.
  • Bhusari SN, Muzaffar K, Kumar P. 2014. Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technol., 266: 354-364.
  • Bonazzi C, Dumoulin E. 2011. Quality changes in food materials as influenced by drying processes. In: Tsotsas E. Mujumdar AS. Modern drying technology volume 3: product quality and formulation. Weinheim, Germany: Wiley-VCH Verlag & Co. KGaA, pp: 1-20.
  • Brand-Williams W, Cuvelier M, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebenson Wiss Technol., 28: 25-30.
  • Cai YZ, Corke H. 2000. Production and properties of spray-dried amaranthus betacyanin pigments. J Food Sci., 65(6): 1248- 1252.
  • Carr RL. 1965. Evaluating flow properties of solids. Chem Eng., 72: 163–168.
  • Chegini GR, Ghobadian B. 2005. Effect of spray-drying conditions on physical properties of orange juice powder. Dry Technol., 23(3): 657-668.
  • Chen L, Remondetto GE, Subirade M. 2006. Food protein based materials as nutraceutical delivery systems. Trends Food Sci Technol., 17: 272-283.
  • Dawidowicz AL, Wianowska D, Baraniak B. 2006. The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT- Food Sci Technol., 39: 308–315.
  • Ersus S, Yurdagel U. 2007. Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J Food Eng., 80(3): 805-812.
  • Fang Z, Bhandaria B. 2010. Encapsulation of polyphenols-a review. Trends Food Sci Technol., 21: 510-523.
  • Fazaeli M, Emam-Djomeh Z, Ashtari AK, Omid M. 2012. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food Bioprod Process., 90: 667–675.
  • Fernandes RVB, Borges SV, Botrel DA. 2013. Influence of spray drying operating conditions on microencapsulated rosemary essential oil properties. Ciência Tecnol Alime., 33(1): 171-178.
  • Fitzpatrick JJ, Iqbal T, Delaney C, Twomey T, Keogh MK. 2004. Effect of poeder properties and storage conditions on the flowability of milk powders with different fat contents. J Food Eng., 64: 435-444.
  • Fuchs M, Turchiuli C, Bohin M, Cuvelier ME, Ordonnaud C, Peyrat-Maillard MN, Dumoulin E. 2006. Encapsulation of oil in powder using spray drying and fluidized bed agglomeration. J Food Process Eng., 75: 27–35.
  • Gong Z, Zhang M, Mujumdar AS, Sun J. 2008. Spray drying and agglomeration of instant bayberry powder. Drying Technol., 26: 116-121.
  • Goula AM, Adamopoulos KG. 2008. Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: II. powder properties. Dry Technol., 26: 726-737.
  • Gómez B, Barba FJ, Domínguez R, Putnik P, Kovačević DB, Pateiro M, Toldrả F, Lorenzo JM. 2018. Microencapsulation of antioxidant compounds through innovative technologies and its specific application in meat processing. Trends Food Sci Technol., 82: 135–147.
  • Gradon L, Sosnowski TR. 2014. Formation of particles for dry powder inhalers. Adv Powder Technol., 25: 43–55.
  • Guo C, Yang J, Wei J, Li Y, Xu J, Jiang Y. 2003. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr Res., 23: 1719-1726.
  • Hausner HH. 1967. Friction conditions in a mass of metal powder. Int J Powder Metal., 3: 7–13.
  • Heimler D, Vignolini P, Dini MG, Romani A. 2005. Rapid tests to assess the antioxidant activity of Phaseolus Vulgaris L. dry beans. J Agr Food Chem., 53: 3053-3059.
  • Holst B, Williamson G. 2008. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol., 19(2): 73-82.
  • Jaya S, Das H. 2004. Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vacuum dried mango powder properties. J Food Eng., 63(2): 125–134.
  • Jinapong N, Suphantharik M, Jamnong P. 2008. Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. J Food Eng., 84: 194–205.
  • Jumah RY, Tashtoush B, Shaker RR, Zraiy AF. 2000. Manufacturing parameters and quality characteristics ofspray dried jameed, Dry Technol., 18(4–5): 967–984.
  • Koç M, Güngör Ö, Zungur A, Yalçın B, Selek İ, Kaymak Ertekin F, Ötles S. 2015. Microencapsulation of extra virgin olive oil by spray drying: Effect of wall materials composition, process conditions, and emulsification method. Food Bioprocess Tech., 8(2): 301-318.
  • Li Y, Guo C, Yang J, Wei J, Xu J, Cheng S. 2006. Evaluation of antioxidant properties of pomegranate peel extract in comparision with pomegranate pulp extract. Food Chem., 96: 254-260.
  • Littringer EM, Noisternig MF, Mescher A, Schroettner H, Walzel P, Griesser UJ, Urbanetz NA. 2013. The morphology and various densities of spray dried mannitol. Powder Technol., 246: 193–200.
  • Luca A, Cilek B, Hasirci V, Sahin S, Sumnu G. 2014. Storage and baking stability of encapsulated sour cherry phenolic compounds prepared from micro- and nano-suspensions. Food Bioprocess Tech., 7(1): 204-211.
  • Matos MC, Barreiro MF, Gandini A. 2010. Olive stone as a renewable source of biopolyols. Ind Crops Prod., 32(1): 7–12.
  • McClements DJ, Decker EA, Weiss J. 2007. Emulsion-based delivery systems for lipophilic bioactive components, J Food Sci., 72(8) R109-124.
  • Mishra DK, Jain AK, Jain PK. 2013. A review on various techniques of microencapsulation. Int J Pharm Chem Sci., 2(2): 962-977.
  • Mishra P, Mishra S, Mahanta CL. 2014. Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food Bioprod Process., 92: 252–258.
  • Mohammed FS, Karakaş M, Akgül H, Sevindik M. 2019. Medicinal Properties of Allium calocephalum Collected from Gara Mountain (Iraq). Fresen Environ Bull, 28(10): 7419-7426.
  • Nakilcioğlu-Taş E, Ötleş S. 2020. Polyphenols from olive stones: Extraction with a pilot scale pressurized water extractor, microencapsulation by spray-dryer and storage stability evaluation. J Food Meas Charact., 14(2): 849-861.
  • Oroian M, Escriche I. 2015. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res Int., 74: 10e36.
  • Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E. 2019. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chem., 272: 494-506.
  • Phisut N. 2012. Spray drying technique of fruit juice powder: some factors influencing the properties of product. Int Food Res J., 19(4): 1297-1306.
  • Ramírez MJ, Giraldo GI, Orrego CE. 2015. Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulates. Powder Technol., 277: 89–96.
  • Ranalli A, Pollastri L, Contento S, Di Loreto G, Iannucci E, Lucera L, Russi F. 2002. Acylglycerol and fatty acid components of pulp seed, and whole olive fruit oils: Their use to characterize fruit variety by chemometrics, J Agr Food Chem., 50: 3775–3779.
  • Ribeiro AM, Estevinho BN, Rocha F. 2019. Microencapsulation of polyphenols-the specific case of the microencapsulation of Sambucus Nigra L. extracts-A review. Trends Food Sci Technol., DOI: 10.1016/j.tifs.2019.03.011.
  • Rodrigues F, Pimentel FB, Oliveira MBPP. 2015. Olive byproducts: Challenge application in cosmetic industry. Ind Crops Prod., 70: 116–124.
  • Santana AA, De Oliveira RA, Kurozawa LE, Park KJ. 2014. Microencapsulation of pequi pulp by spray drying: use of modıfied starches as encapsulating agent. Eng AgrJabotıcabal, 34(5): 980-991.
  • Saénz C, Tapia S, Chávez J, Robert P. 2009. Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chem., 114: 616–622.
  • Sevindik M, Akgul H, Akata I, Alli H, Selamoglu Z. 2017. Fomitopsis pinicola in healthful dietary approach and their therapeutic potentials. Acta alimentaria, 46(4): 464-469.
  • Sevindik M. 2018. Investigation of antioxidant/oxidant status and antimicrobial activities of Lentinus tigrinus. Advances in pharmacological sciences, 2018. https://doi.org/ 10.1155/2018/1718025
  • Sevindik M. 2019. The novel biological tests on various extracts of Cerioporus varius. Fresenius Environmental Bulletin, 28(5): 3713-3717.
  • Schubert H. 1993. Instantization of powdered food products. Int Chem Eng., 33: 28-45.
  • Shishir MRI, Taip FS, Aziz NA, Talib RA. 2014. Physical properties of spray-dried pink guava (Psidium guajava) powder. Agric Agric Sci Procedia, 2: 74–81.
  • Sievers RE, Huang ETS, Villa JA, Kawamoto JK, Evans MM, Brauer PR. 2001. Low-temperature manufacturing of fine pharmaceutical powders with supercritical fluid aerosolization in a bubble dryer. Pure Appl Chem., 73: 1299– 1303.
  • Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. Am J Enol Viticult., 16: 144–153.
  • Sri.s J, Seethadevi A, Prabha KS, Muthuprasanna P, Pavitra P. 2012. Microencapsulation: A review. Int J Pharma Bio Sci., 3(1): 509-531.
  • Stelmach E, Pohl P, Szymczycha-madeja A. 2015. The content of Ca, Cu, Fe, Mg and Mn and antioxidant activity of green coffee brews. Food Chem., 182: 302–308.
  • Vehring R. 2008. Pharmaceutical particle engineering via spray drying. Pharm Res., 25(5): 999-1022.
  • Vlyssides AG, Barampouti EMP, Mai STh. 2008. Physical characteristics of olive stone wooden residues: possible bulking material for composting process. Biodegradation, 19(2): 209-214.
  • Vu TO, Galet L, Fages J, Oulahna D. 2003. Improving the dispersion kinetics of a cocoa powder by size enlargement. Powder Technol., 130: 400-406.
  • Walton DE. 2000. The morphology of spray-dried particles a qualitative view. Dry Technol., 18: 1943-1986.
  • Wildman REC, Wildman R, Wallace TC. 2001. Handbook of Nutraceuticals and Functional Foods. New York: CRC Press. 560 p.
  • Xu ZJ, Yeung SYV, Chang Q, Huang Y, Chen YZ. 2004. Comparison of antioxidant activity and bioavailability of tea epicatechins with their epimers. Br J Nutr., 91: 873-881.
  • Zhang L, Kosaraju SL. 2007. Biopolymeric delivery system for controlled release of polyphenolic antioxidants. Eur Polym J., 43: 2956-2966.
  • Zungur A. 2013. Mikroenkapsülasyon İşleminin Ekstra Sızma Zeytinyağı Tozunun Depolanması Sırasında Oksidatif Stabilite, Sorpsiyon ve Fiziksel Kalite Kriterleri Üzerine Etkisi. Yüksek Lisans Tezi. Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir, 169 s (yayımlanmamış).
  • Zungur A, Koç M, Yalçın B, Kaymak-Ertekin F, Ötleş S. 2014. Storage stability of microencapsulated extra virgin olive oil powder. FOODBALT 2014. Jelgava-Latvia, May 8-9 2014. Pp: 257-261.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)