Bazı Turunçgil Anaçlarında Tuza Tolerans için In vitro Testleme

Turunçgiller coğrafi dağılımlarından dolayı tuzluluğa hassas bölgelerde yetiştirilen ürünler arasında önemli bir yerdedir. Testleme metotları, ıslah ve ürün geliştirme programlarında önemli bir konuma sahiptir. Yapılan bu çalışmada in vitro koşullarda Kleopatra mandarini (Citrus reshni Tan.), Turunç (Citrus aurantium L.), Kaba limon (Citrus jambhiri Lush.), Volkamer limon (Citrus volkameriana Tan & Pasq.), Carrizo sitranjı (Poncirus trifoliata L. Raf. × Citrus sinensis L. Osbeck) ve Üç yapraklı (Ponciru trifoliata Raf.) gibi bazı turunçgil anaçlarının farklı NaCl konsantrasyonlarında tuza olan tepkilerini belirlemek amaçlanmıştır. Söz konusu turunçgil anaçlarına ait tohumlar 0, 45, 90 ve 135 mM NaCl içeren MS ortamında in vitro tohum çimlendirilme testine tabi tutulmuştur. Genel olarak bütün tuz konsantrasyonlarında en yüksek çimlenme Volkamer Limon ve Turunç anacından elde edilirken, en düşük çimlenme Kaba limon ve Üç yapraklı anacında gerçekleşmiştir. Sonuç olarak bu çalışmayla turunçgil anaçlarında tuza toleransı belirlenmesinde in vitro koşulların hızlı testleme de kullanılabileceği kanısına varılmıştır.

In vitro Screening for Salt Tolerance of Some Citrus Rootstocks

Just because of geographical spread, citrus species generally grow in places sensitive to salinity. Testing methods have a significant role in breeding and cultivar development programs. This study was conducted to investigate in vitro salt response of Cleopatra mandarin (Citrus reshni Tan.), sour orange (Citrus aurantium L.), rough lemon (Citrus jambhiri Lush.), Volkamer lemon (Citrus volkameriana Tan & Pasq.), Carrizo citrange (Poncirus trifoliata L. Raf. X Citrus sinensis L. Osbeck) and trifoliate orange (Poncirus trifoliata Raf.) rootstocks at different NaCl concentrations. Seeds were germinated in MS medium with 0, 45, 90 and 135 mM NaCl concentrations. In general, the greatest germination rates in all salt concentrations in Volkamer lemon and sour orange rootstocks and the lowest values were observed in rough lemon and trifoliate orange rootstocks. Present findings revealed that in vitro conditions could reliably be used in salt tolerance tests of citrus rootstocks.

___

  • Abari AAF. Yarmohammadıan MH. Esteki M. 2011. Assessment Of Quality Of Educational A NonGovernmental University Via Servqual Model.Procedia Social And Behavioral Sciences, V. 15, P: 2299-2304.
  • Alqahtani M, Roy SJ, Tester M. 2019. Increasing Salinity Tolerance of Crops. In: Savin R., Slafer G. (eds) Crop Science. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY.
  • Aydınşakir K, Erdurmuş C, Büyüktaş D, Çakmakçı S, 2012. Tuz (NaCl) stresinin bazı silajlık sorgum (Sorghum bicolor) çeşitlerinin çimlenme ve erken fide gelişimi üzerine etkileri. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 25(1): 47-52.
  • Azza MAM, Fatma EL-Quensi EM, Farahat MM, 2007. Responses of ornamental plants and woody trees to salinity. World J. Agric. Sci. 3: 386–395.
  • Ben-Hayyim G, Moore G, 2007. Recent advances in breeding Citrus for drought and saline stress tolerance. In: MA. Jenks l. (eds.), Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops, pp: 627–642.
  • Cimen B, Yesiloglu T. 2016. Rootstock breeding for abiotic stress tolerance in citrus. In Abiotic and Biotic Stress in Plants-Recent Advances and Future Perspectives. IntechOpen.
  • Colmenero-Flores JM, Arbona V, Morillon R, GómezCadenas A. 2020. Salinity and water deficit. In The Genus Citrus (pp. 291-309). Woodhead Publishing.
  • Córdoba F, López-Pérez AJ, Navarro-García N, PérezTornero O. 2018. Mutant citrus rootstocks tolerant to salinity: in vitro assessment of the growth changes produced by salt. In IV International Symposium on Citrus Biotechnology 1230 (pp. 59-66).
  • Demirkaya M. 2014. Improvement in tolerance to salt stress during tomato cultivation, Turkısh Journal of Bıology, vol.38, pp.193-199, 2014.
  • Etehadpour M, Fatahi R, Zamani Z, Golein B, Naghavi MR. Gmitter F. 2019. Evaluation of the salinity tolerance of Iranian citrus rootstocks using morph-physiological and molecular methods, Scientia Horticulturae, https://doi.org/10.1016/j.scienta.2019.109012.
  • Fadli A, El Aymani I, Chetto O, Boudoudou D, Talha A. Benkerane R, Benyahia H. 2015. Screening of six citrus rootstocks for salt tolerance at emergence and early seedling stage, International Journal of Recent Scientific Research, 6 (12): 7672-7678.
  • Habibi F, Amiri ME. 2013. Influence of in vitro salinity on growth, mineral uptake and physiological responses of two citrus rootstocks. International journal of Agronomy and Plant Production 4 (6): 1320-1326.
  • Haouala F, Hannachi C, Zid E. 2003. Exploitation de la variabilité somaclonale pour la recher- che d’œillets tolérants à la salinité, Tropicul- tura 21: 16–21
  • Javed F. 2002. In vitro salt tolerance in wheat. I. Growth and ions accumulation. Int. J. Agric. Biol., 4: 459–461.
  • Haouala, F, C. Hannachi, E. Zid, 2003. Exploitation de la variabilité somaclonale pour la recherche d’œillets tolérants à la salinité.Tropicultura, 21: 16–21.
  • Kumar A, Sharma JA, Mishra S. 2010. Influence of Arbuscular Mycorrhizal (AM) Fungi and Salinity on Seedlings Growth, Solute Accumulation and Mycorrhizal Dependency of Jatropha curcas L. Journal of Plant Growth Regulation. 29: 297-306.
  • Larbi A, Kchaou H, Gaaliche B, Gargouri K, Boulal H, Morales F. 2020. Supplementary potassium and calcium improves salt tolerance in olive plants. Scientia Horticulturae, 260, 108912.
  • Levy Y, Syvertsen JP. 2004. Irrigation water quality and salinity effects in citrus trees. Hort. Rev. (Amer. Soc. Hort. Sci.) 30:37–82.
  • Anjum MA. 2008. Effect of NaCl concentrations in irrigation water on growth and polyamine metabolism in two citrus rootstocks with different levels of salinity tolerance Acta Physiologiae Plantarum, 30 (2008), pp: 43-52.
  • Montoliu A, López-Climent MF, Arbona V, PérezClemente RM, Gómez Cadenas A. 2009. A novel in vitro tissue culture approach to study salt stress responses in citrus. Plant Growth Regulat. 59: 179–187.
  • Murashige T, Skoog FA. 1962. A revised medium for a rapid growth and bioassays with tobacco tissues cultures. Plant Physiol 15: 473-479.
  • Pérez-Pérez JG, García-Sánchez F, Robles JM, Botía P. 2015. ‘Star Ruby’grapefruit and ‘Clemenules’ mandarin trees show different physiological and agronomic responses to irrigation with saline water. Irrigation Science, 33(3): 191-204.
  • Prior LD, Grieve AM, Bevington KB, Slavich PG. 2007. Long-term effects of saline irrigation water on Valencia orange trees: relationships between growth and yield, and salt levels in soil and leaves. Aust. J. Agric. Res. 58: 349–358.
  • Rajkumar R. 2013. A study on effect of salt stress in the seed germination and biochemical parameters of rice (Oryza sativa L.) under in vitro condition. Asian J. Plant Sci. 3(6): 20-25.
  • Rochdi A, Lemsellek A, Boussarhal A, Rachidai A. 2005. Greenhouse evaluation of salt tolerance of some citrus rootstock sitrus aurantium and two hybrids of Poncirus trifoliata (Poncirus x Citrus sinensis and Poncirus x sunk Mandarin). Biotechnol. Agron. Soc. Environ., 9: 65-73.
  • Shawquad Md, Hamid A, Salahuddin A, Quasem A, Karim Md. 2008. Effect of Sodium Chloride on Growth, Photosynthesis and Mineral Ions Accumulation of Different Types of Rice (Oryza sativa L.). Journal of Agronomy and Crop Science. 179. 149- 161. 10.1111/j.1439-037X.1997.tb00511.x.
  • Shiyab SM, Shıblı RA, Mohammad MM. 2003: Influence of Sodium Chloride Salt Stress on Growth and Nutrient Acquisition of Sour Orange in vitro. Journal of Plant Nutrition 26, 985–996.
  • Sykes SR. 2011. Chloride and sodium excluding capacities of citrus rootstock germplasm introduced to Australia from the People’s Republic of China. Sci. Hort.
  • Yaman M, Yıldırım E, Belen S, Bostancı C. 2016. Bazı Domates (Lycopersicum esculentum L.) Çeşitlerinde, Farklı NaCl Konsantrasyonlarının Tohum Çimlenmesi ve Ortalama Çimlenme Süresi Üzerine Etkileri, Türk Doğa ve Fen Dergisi, 5: 47-51.
  • Yassin A. 2005. Adverse effects of salinity on citrus. International Journal of Agricultural Biology, 4, pp: 668–680