Hayıt (Vitex agnus-castus L.) Ballarının Uçucu Bileşenlerinin ve Duyusal Özelliklerinin Tanımlanması

Bu çalışmada Aydın, Çanakkale, İzmir ve Muğla illerinde üretilen hayıt ballarının bazı fiziksel ve kimyasal özellikleri ile uçucu bileşenlerinin ve duyusal özelliklerinin tanımlanması amaçlanmıştır. Değerlendirilen hayıt ballarında toplam 16 farklı uçucu bileşen belirlenmiştir (4 aldehit, 3 furan, 2 alkol, 2 sülfürlü bileşik, 2 terpen, 1 alkan, 1 benzenik bileşik ve 1 keton). Hayıt ballarının ortak uçucu bileşenlerinin dimetil sülfit, oktan, nonanal, 2-furankarboksaldehit, 2-etil-1-hegzanol, 1-(2-furanil)-etanon, benzaldehit, 5-metil-2-furankarboksaldehit ve benzenasetaldehit olduğu belirlenmiştir. Bütün hayıt ballarında benzenasetaldehit en fazla bulunan uçucu bileşen olup ardından benzaldehit ve 2-furankarboksaldehit gelmektedir. Duyusal değerlendirme sonucunda hayıt ballarında çiçeğimsi, meyvemsi, karamelimsi, acı badem, fermente, hayvanımsı, baharatımsı, vaksımsı ve odunumsu koku karakteri, tatlı ve ekşi tat karakterleri ile burukluk ağız hissi algılanmıştır. Bütün örneklerde çiçeğimsi, meyvemsi, karamelimsi, tatlı ve ekşi karakter yoğun olarak algılanmıştır.

Characterization of Volatile Compounds and Sensory Properties of Chaste (Vitex agnus-castus L.) Honeys

In this study, it was aimed to characterize some physical and chemical properties, volatile compounds and sensory properties of chaste honey produced in Aydın, Çanakkale, İzmir and Muğla provinces. A total of 16 different volatile compounds (4 aldehydes, 3 furans, 2 alcohol, 2 sulphur compounds, 2 terpenes, 1 alkane, 1 benzenic compound and 1 ketone) were identified in the evaluated chaste honeys. It was determined that common volatile compounds of chaste honeys were dimethyl sulphide, octane, nonanal, 2-furancarboxaldehyde, 2-ethyl-1-hexanol, 1- (2-furanyl) -ethanone, benzaldehyde, 5-methyl-2-furancarboxaldehyde, and benzenacetaldehyde. Benzenacetaldehyde was the most abundant volatile compound in all chaste honeys, followed by benzaldehyde and 2-furancarboxaldehyde. As a result of the sensory evaluation, floral, fruity, caramel-like, bitter almond, fermented, animal-like, spicy, waxy, and woody aroma characters, sweet and sour taste characters and astringent mouthfeeling were detected in chaste honeys. The floral, fruity, caramel-like, sweet, and sour characters were intensely perceived in all samples.

___

  • Acree T, Arn H, 2020. Flavournet. Erişim adresi: http://www.flavornet.org/flavornet.html [Erişim tarihi: 11.09.2020].
  • Altuğ Onoğur T, Elmacı Y. 2015. Gıdalarda Duyusal Değerlendirme. İzmir: Sidas Medya. ISBN:978-9944-5660-8-7.
  • Alvarez-Suarez JM, Tulipani S, Diaz D, Estevez Y, Romandini S, Giampieri F, Damiani E, Astolfi P, Bompadre S, Battino M. 2010. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food and Chemical Toxicology, 48: 2490–2499.
  • AOAC, 1990. Association of Official Analytical Chemists. Official Methods of Analysis. Virginia: AOAC. Baroni MV, Nores ML, Díaz MDP, Chiabrando GA, Fassano JP, Costa C, Wunderlin DA. 2006. Determination of volatile organic compound patterns characteristic of five unifloral honey by solid-phase microextraction− gas chromatography− mass spectrometry coupled to chemometrics. Journal of Agricultural and Food Chemistry, 54: 7235-7241.
  • Barra MG, Ponce-Díaz MC, Venegas-Gallegos C. 2010. Volatile compounds in honey produced in the central valley of Ñuble province, Chile. Chilean Journal of Agricultural Research, 70: 75-84.
  • Bayraktar D, Onoğur TA. 2011. Investigation of the aroma impact volatiles in Turkish pine honey samples produced in Marmaris, Datça and Fethiye regions by SPME/GC/MS technique. International Journal of Food Science & Technology, 46: 1060-1065.
  • Boi M, Llorens JA, Cortés L, Lladó G, Llorens L. 2013. Palynological and chemical volatile components of typically autumnal honeys of the western Mediterranean. Grana, 52: 93-105.
  • Brudzynski K, Kim L. 2011. Storage-induced chemical changes in active components of honey de-regulate its antibacterial activity. Food Chemistry, 126: 1155–1163.
  • Can Z, Yildiz O, Sahin H, Turumtay EA, Silici S, Kolayli S. 2015. An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chemistry, 180: 133-141.
  • Castro-Vázquez L, Díaz-Maroto MC, González-Viñas MA, Pérez-Coello MS. 2009. Diferentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chemistry, 112: 1022–1030.
  • Castro-Vázquez L, Díaz-Maroto MC, Pérez-Coello MS. 2007. Aroma composition and new chemical markers of Spanish citrus honeys. Food Chemistry, 103: 601-606.
  • Castro-Vázquez L, Leon-Ruiz V, Alañon ME, Pérez-Coello, MS, González-Porto AV. 2014. Floral origin markers for authenticating Lavandin honey (Lavandula angustifolia x latifolia). Discrimination from Lavender honey (Lavandula latifolia). Food Control, 37: 362-370.
  • Cavia MM, Fernandez-Muino MA, Alonso- Torre SR, Huidobro JF, Sancho MT. 2007. Evolution of acidity of honeys from continental climates: Influence of induced granulation. Food Chemistry,100: 1728–1733.
  • Chen H, Fan CL, Wang ZB, Chang QY, Wang W, Li XY, Pang GF. 2013. Evaluation of measurement uncertainty in EA–IRMS: for determination of δ 13 C value and C-4 plant sugar content in adulterated honey. Accreditation and Quality Assurance, 18: 351-358.
  • Costa AC, Garruti DS, Madruga MS. 2019. The power of odour volatiles from unifloral melipona honey evaluated by gas chromatography–olfactometry Osme techniques. Journal of the Science of Food and Agriculture, 99: 4493-4497.
  • Cuevas-Glory LJ, Pino JA, Santiago LS, SauriDuch E. 2007. A review of volatile analytical methods for determining the botanical origin of honey. Food Chemistry, 103:1032-1043.
  • Escriche I. Visquert M, Juan-Borras M, Fito P. 2009. Influence of simulated industrial thermal treatments on the volatile fractions of different varieties of honey. Food Chemistry, 112: 329-338.
  • Etzold E, Lichtenberg-Kraag B. 2007. Determination of the botanical origin of honey by Fourier-Transformed İnfrared Spectroscopy: An approach for routine analysis. European Food Research and Technology, 227: 579-586.
  • Fakir H, Erbaş S, Özen M, Dönmez İE. 2014. Hayıt (Vitex agnus-castus L.)’da farklı toplama zamanlarının uçucu yağ oranı ve bileşenleri üzerine etkisi. Avrupa Bilim ve Teknoloji Dergisi, 1(2), 25-28.
  • Fallico B, Zappala M, Arena E, Verzera A. 2004a. Effects of heating process on chemical composition and HMF levels in Sicilian monofloral honeys. Food Chemistry, 85: 305-313.
  • Fallico B, Zappala M, Arena E, Verzera A. 2004b. Effects of conditioning on HMF content in unifloral honeys. Food Chemistry, 85: 305– 313.
  • FAO 2019 http://www.fao.org/resources/infographics/infographics- details/en/c/1202954/
  • FAO, 2018 http://www.fao.org/faostat/en/?#data
  • Gül A. 2016. Türkiye'de üretilen bazı monofolaral bal örneklerinin biyokimyasal özelliklerinin belirlenmesi. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 4: 1123-1126.
  • IHC, 2009. Harmonised Methods Of The International Honey Commission. Erişim adresi: https://www.ihc-platform.net/ihcmethods2009.pdf [Erişim tarihi 24.06.2020].
  • Jerković I, Marijanović Z. 2010. Oak (Quercus frainetto Ten.) honeydew honey—approach to screening of volatile organic composition and antioxidant capacity (DPPH and FRAP assay). Molecules, 15: 3744-3756.
  • Juan-Borrás M, Domenech E, Hellebrandova M, Escriche I. 2014. Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys. Food Research International, 60: 86-94.
  • Karabagias IK, Badeka A, Kontakos S, Karabournioti S, Kontominas MG. 2014. Characterization and classification of Thymus capitatus (L.) honey according to geographical origin based on volatile compounds, physicochemical parameters and chemometrics. Food Research International, 55: 363–372.
  • Karabagias IK, Dimitriou E, Halatsi E, Nikolaou C. 2017. Volatile profile, pigment content, and in vitro radical scavenging activity of flower, thyme, and fir honeys produced in Hellas. Journal of Food Chemistry Nanotechnology. 3: 98–104.
  • Karadal F, Yıldırım Y. 2012. Balın kalite nitelikleri, beslenme ve sağlık açısından önemi. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 9: 197-209.
  • Kaskoniene V, Venskutonis PR, Ceksteryte V. 2008. Composition of volatile compounds of honey of various floral origin and beebread collected in Lithuania. Food Chemistry, 111: 988−997.
  • Kaškonienė V, Venskutonis PR. 2010. Floral markers in honey of various botanical and geographic origins: a review. Comprehensive Reviews in Food Science and Food Safety, 9: 620-634.
  • Khalil MI, Sulaiman SA, Gan SH. 2010. High 5-hydroxymethylfurfural concentrations are found in Malaysian honey samples stored for more than one year. Food and Chemical Toxicology, 48: 2388–2392.
  • Koç AU, Karacaoğlu M, Doğan M. 2017a. Hayıt (Vitex agnus-castus), çam ve karışım çiçek balının bazı kalite kriterleri açısından karşılaştırılması. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 14: 17-21.
  • Koç AU, Karacaoğlu M, Nadem HŞ, Doğan M. 2017b. Determination of shelf life of chaste tree (Vitex agnus castus) honey and pine honey. Gıda, 42: 577-587.
  • Kolancı BY. 2017. Karahayıt’ta (Denizli) hayıt ağacının (Vitex agnus-castus l.) geleneksel kullanımı. Disiplinlerarası Akdeniz Araştırmaları Dergisi, 3: 50-60.
  • Kuś PM, Jerković I, Marijanović Z, Kranjac M, Tuberoso CI. 2018. Unlocking Phacelia tanacetifolia Benth. honey characterization through melissopalynological analysis, color determination and volatiles chemical profiling. Food Research International, 106: 243-253.
  • Machado AM, Miguel MG, Vilas-Boas M, Figueiredo AC. 2020. Honey volatiles as a fingerprint for botanical origin—a review on their occurrence on monofloral honeys. Molecules, 25: 374.
  • Mannaş D, Altuğ T. 2007. SPME/GC/MS and sensory flavour profile analysis for estimation of authenticity of thyme honey. International Journal of Food Science & Technology, 42: 133-138.
  • Manyi-Loh CE, Ndip RN, Clarke AM. 2011. Volatile compounds in honey: a review on their involvement in aroma, botanical origin determination and potential biomedical activities. International Journal of Molecular Sciences, 12: 9514-953.
  • Martinotti S, Ranzato E. 2018. Honey, wound repair and regenerative medicine. Journal of Functional Biomaterials, 9(2), 34.
  • Moniruzzaman M, Rodríguez I, Ramil M, Cela R, Sulaiman SA, Gan SH. 2014. Assessment of gas chromatography time-of-flight accurate mass spectrometry for identification of volatile and semi-volatile compounds in honey. Talanta, 129: 505-515.
  • Nayik GA, Nanda V. 2015. Characterization of the volatile profile of unifloral honey from Kashmir valley of India by using solid-phase microextraction and gas chromatography–mass spectrometry. European Food Research and Technology, 240: 1091-1100.
  • Nombre I, Schweitzer P, Boussim JI, Rasolodimby JM. 2010. Impacts of storage conditions on physicochemical characteristics of honey samples from Burkina Faso. African Journal of Food Science, 4: 458 – 463.
  • Pasias IN, Kiriakou IK, Proestos C. 2017. HMF and diastase activity in honeys: A fully validated approach and a chemometric analysis for identification of honey freshness and adulteration. Food Chemistry, 229: 425-431.
  • Patrignani M, Fagúndez GA, Tananaki C, Thrasyvoulou A, Lupano CE. 2018. Volatile compounds of Argentinean honeys: Correlation with floral and geographical origin. Food Chemistry, 246: 32–40.
  • Pehlivan T, Gül A. 2016. Türkiye’de üretilen keçiboynuzu, kekik ve sütleğen ballarinin kimyasal özellikleri. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21: 48-56.
  • Pérez RA, Sánchez-Brunete C, Calvo RM, Tadeo JL. 2002. Analysis of volatiles from Spanish honeys by solid-phase microextraction and gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 50: 2633–2637.
  • Petretto GL, Tuberoso CIG, Vlahopoulou G, Atzei A, Mannu A, Zrira S, Pintore G. 2016. Volatiles, color characteristics and other physico–chemical parameters of commercial Moroccan honeys. Natural Product Research, 30: 286–292.
  • Plutowska B, Chmiel T, Dymerski T, Wardencki WA. 2011. Headspace solid-phase microextraction method development and its application in the determination of volatiles in honeys by gas chromatography. Food Chemistry, 126: 1288–1298.
  • Radovic BS, Careri M, Mangia A, Musci M, Gerboles M, Anklam E. 2001. Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food Chemistry, 72: 511-520.
  • Ren H, Yue J, Wang D, Fan J, An L. 2019. HPLC and 1 H-NMR combined with chemometrics analysis for rapid discrimination of floral origin of honey. Journal of Food Measurement and Characterization, 13: 1195-1204.
  • Ruisinger B, Schieberle P. 2012. Characterization of the key aroma compounds in rape honey by means of the molecular sensory science concept. Journal of Agricultural and Food Chemistry, 60: 4186-4194.
  • Serra J, Ventura F. 2003. Flavour index and aroma profiles of fresh and processed honeys. Journal of the Science of Food and Agriculture, 83: 275-282.
  • Sichilongo K, Padiso T, Turner Q. 2020. AMDIS-Metab R data manipulation for the geographical and floral differentiation of selected honeys from Zambia and Botswana based on volatile chemical compositions using SPME–GC–MS. European Food Research and Technology, 246: 1679–1690.
  • Siegmund B, Urdl K, Jurek A, Leitner E. 2018. “More than Honey”: Investigation on volatiles from monovarietal honeys using new analytical and sensory approaches. Journal of Agricultural and Food Chemistry, 66: 2432–2442.
  • Soria AC, González M, De Lorenzo C, Martınez-Castro I, Sanz J. 2004. Characterization of artisanal honeys from Madrid (Central Spain) on the basis of their melissopalynological, physicochemical and volatile composition data. Food Chemistry, 85: 121-130.
  • Soria AC, Martínez-Castro I, Sanz J. 2003. Analysis of volatile composition of honey by solid phase microextraction and gas chromatography-mass spectrometry. Journal of Seperation Science, 26: 793-801.
  • Soria AC, Martínez-Castro I, Sanz J. 2008. Some aspects of dynamic headspace analysis of volatile components in honey. Food Research International, 41: 838-848.
  • Soria AC, Martínez-Castro I, Sanz J. 2009b. Study of the precision in the purge-and-trap–gas chromatography–mass spectrometry analysis of volatile compounds in honey. Journal of Chromatography A, 1216: 3300-3304.
  • Soria AC, Sanz J, Martínez-Castro I. 2009a. SPME followed by GC–MS: a powerful technique for qualitative analysis of honey volatiles. European Food Research and Technology, 228: 579-590.
  • TGK, 2020. Türk Gıda Kodeksi Bal Tebliği. Tebliğ No: 2020/7. Ankara: Resmi Gazete Sayı: 31107. The Good Scents Company, 2020. Erişim adresi: http://www.thegoodscentscompany.com/ [Erişim tarihi: 12.09.2020].
  • Tian H, Shen Y, Yu H, Chen C. 2018. Aroma features of honey measured by sensory evaluation, gas chromatography-mass spectrometry, and electronic nose. International Journal of Food Properties, 21: 1755–1768.
  • Tofighi Z, Es-haghi A, Asl MM, Tajic AR, Navai MS, Tavakoli, S, Hadjiakhoondi A, Yassa N. 2014. Investigation of chemical keys for relationship between plants and their unifloral honeys by hydrodistillation and SPME and biological activities of honeys. European Food Research and Technology, 238: 665-673.
  • TS 3036, 2010. Bal. Türk Standartları Enstitüsü, Ankara.
  • Turkmen N, Sari F, Poyrazoglu ES, Velioglu YS. 2006. Effects of prolonged heating on antioxidant activity and colour of honey. Food Chemistry, 95: 653–657.
  • Vázquez L, Verdú A, Miquel A, Burló F, Carbonell-Barrachina AA. 2007. Changes in physico-chemical properties, hydroxymethylfurfural and volatile compounds during concentration of honey and sugars in Alicante and Jijona turrón. European Food Research and Technology, 225: 757-767.
  • Verzera A, Campisi S, Zappalà M, Bonaccorsi I. 2001. SPME-GC-MS analysis of honey volatile components for the characterization of different floral origin. American Laboratory, 33: 18–21.
  • Wang H, Cao X, Han T, Pei H, Ren H, Stead S. 2019. A novel methodology for real-time identification of the botanical origins and adulteration of honey by rapid evaporative ionization mass spectrometry. Food Control, 106: 106753.
  • Wardencki W, Chmiel T, Dymerski T, Biernacka P, Plutowska B. 2009. Application of gas chromatography, mass spectrometry and olfactometry for quality assessment of selected food products. Ecological Chemistry and Engineering, 16: 287–300.
  • Wolski T, Tambor K, Rybak-Chmielewska H, Kedzia B. 2006. Identification of honey volatile components by solid phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS). Journal of Apicultural Science, 50(2), 115-126.
  • Zhao H, Cheng N, Zhang Y, Sun Z, Zhou W, Wang Y, Cao W. 2018. The effects of different thermal treatments on amino acid contents and chemometric-based identification of overheated honey. LWT, 96: 133-139.
  • Zhao J, Du X, Cheng N, Chen L, Xue X, Wu L, Cao, W. 2016. Identification of monofloral honeys using HPLC–ECD and chemometrics. Food Chemistry, 194: 167-174
  • Zhou J, Yao L, Li Y, Chen L, Wu L, Zhao J. 2014. Floral classification of honey using liquid chromatography–diode array detection–tandem mass spectrometry and chemometric analysis. Food chemistry, 145: 941-949.