Determination of Heavy Metal and Radioactivity in Agaricus campestris Mushroom Collected from Kahramanmaraş and Erzurum Proviences

Bu çalışmada, Kahramanmaraş ve Erzurum ilinden toplanan Agaricus campestris mantarlarındaki radyoaktivite ve ağır metal birikimleri belirlenmiştir. Radyoaktivite konsantrasyonları için HPGe gama dedektörü, ağır metal miktarlarının belirlenmesi için ise ICP-MS kullanılmıştır. Radyoaktif element olarak doğal (238U, 232Th 40K) ve yapay (137Cs) radyonüklit konsantrasyonları belirlenmiş ve mantarlardan dolayı alınan efektif doz değerleri hesaplanmıştır. Yetişme yerleri olan topraklarda da aynı ölçümler yapılmış, soğrulan dozlar ve yaşam boyu kanser riski hesaplanmıştır. Ağır metal olarak Mg, Al, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Pb206, Pb207 ve Pb208 miktarları belirlenmiştir. Erzurum'dan toplanan mantarlardaki 238U, 232Th, 40K aktivite konsantrasyonları sırasıyla 12,1 ± 0,8, 11,7 ± 0,9, 497,7 ± 17,8 Bq/kg olarak hesaplanmış ve 137Cs sistem tarafından ölçülememiştir. Kahramanmaraş' tan toplanan mantarlarda, 232Th ve 40K aktivite konsantrasyonları sırasıyla 13,4 ± 0,5, 134,9 ± 6,3 Bq/kg olarak hesaplanmış, 238U ve 137Cs aynı şekilde sistem tarafından ölçülememiştir. Mantarlardan dolayı alınan efektif doz Erzurum ve Kahramanmaraş için sırasıyla 75 ve 29 ?Sv hesaplanmış olup dünya ortalaması kabul edilen 290 ?Sv'den küçük bulunmuştur. Erzurum için soğrulan doz 37,39 nGy/saat, yaşam boyu kanser riski 16,5 x 10-5, Kahramanmaraş için soğrulan doz 30,92 nGy/saat, yaşam boyu kanser riski 13,3 x 10-5 olarak hesaplanmıştır. Her ağır metal için günlük alım miktarları belirlenmiştir. Radyoknüklit aktivite konsantrasyonları ve ağır metal birikim miktarları sağlığı tehdit edecek seviyede bulunmamış olup, yalnızca arsenik (As) miktarları (0,025 ve 0,039 mg/kg) her iki ilden toplanan mantarlarda da Dünya Sağlık Örgütü (WHO) ve Birleşmiş Milletler Gıda ve Tarım Örgütü'nün (FAO) gıda katkısı uzmanları topluluğunca hazırlanan ortak raporunda izin verilen üst limitten (0,015 mg/kg) bir miktar fazla bulunmuştur

Kahramanmaraş ve Erzurum'dan toplanan Agaricus campestris mantarlarının radyoaktivite tayini ve ağır metal miktarlarının belirlenmesi

In this study, radioactivity and heavy metals accumulations in Agaricus campestris mushroom collected from Kahramanmaraş and Erzurum provinces was determined. HPGe gamma detector was used for the determination of radioactivity concentrations. Heavy metal content was measured using a ICP-MS. As radioactive element; natural (238U, 232Th 40K) and artificial radionuclide (137Cs) concentrations were determined. The values of the committed effective dose were calculated. Same measurements were made in soils. Absorbed dose and excess lifetime cancer risk were calculated. Amount of Mg, Al, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Pb206, Pb207 and Pb208 as heavy metals of mushrooms were determined. 238U, 232Th, 40K activity concentrations of mushroom collected from Erzurum was determined as 12.1 ± 0.8, 11.7 ± 0.9, 497.7 ± 17.8 Bq/kg, respectively and 137Cs was not detected by system. 232Th and 40K activity concentrations of mushroom collected from Kahramanmaraş was determined as 13.4 ± 0.5, 134.9 ± 6.3 Bq/kg, respectively, 238U and 137Cs was not detected by system similarly. The value of the committed effective dose collected from Erzurum and Kahramanmaraş were calculated as 75 and 29 ?Sv respectively and these values were found lower than 290 ?Sv accepted as world average. Absorbed dose and risk of lifetime cancer for Erzurum was determined as 37.39 nGy/h, 16.5 x 10-5 ; absorbed dose and excess lifetime cancer risk for Kahramanmaraş was determined as 30.92 nGy/h, 13.3 x 10-5 respectively. Amount of daily intake for each heavy metal was calculated. Radionuclide activity concentrations and accumulations of heavy metal were not founded threaten level to healthy, except from arsenic As (0.025 and 0.039 mg/kg) in mushroom collected from both provinces. They were found a bit higher than upper limit (0.015 mg/kg) in report which is prepared World Health Organization (WHO) and Food and Agriculture Organization of the United Nations (FAO) jointly.

___

  • Agrahar-Murugkar D, Subbulakshmi G. 2005. Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. 10.1016/j.foodchem.2004.03.042. 89(4): 599-603. DOI:
  • Alonso J, Garcia MA, Pérez-López M, Melgar MJ. 2003. The concentrations and bioconcentration factors of copper and zinc in Contamination 10.1007/s00244-002-2051-0. Archives of Environmental Toxicology. 44: 180-188. DOI:
  • Andersen A, Lykke SE, Lange M, Bech K. 1982. Trace elements in edible mushrooms. Publ. Statens Levneddsmiddelinst. 68: 29- 37.
  • Arafa W. 2004. Specific activity and hazards of granite samples collected from the Eastern Desert of Egypt. J. Environ. Radioact., 75: 315-327. doi:10.1016/j.jenvrad.2004.01.004.
  • Barcan VSH, Kovnatsky EF, Smetannıkova MS. 1998. Absorption of heavy metals in wild berries and edible mushrooms in an area affected by smelter emissions. Water, Air, and Soil Pollution. 103: 173-195. 10.1023/A:1004972632578.
  • Belivermiş M, Kılıç Ö, Çotuk Y. 2008. Heavy metal and radioactivity concentrations in soil and moss samples from Istanbul, Turkey. IUFS Journal of Biology. 67(1): 39-47.
  • Beretka J, Mathew PJ. 1985. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 48: 87-95. DOI: 10.1097/00004032-198501000-00007.
  • Borovicka J, Randa Z. 2007. Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycological Progress. 6: 249-259. DOI 10.1007/s11557-007-0544-y.
  • Castro LP, Maihara VA, Moura PLC, Figueira RCL. 2007. 137Cs and 40K estimate in edible mushrooms in São Paulo, Brazil. 2007. International Nuclear Atlantic Conference - INAC 2007 Santos, SP, Brazil, 29.09.2007- 05.10.2007.
  • Castro LP, Maihara VA, Silva PSC, Figueira RCL. 2012. Artificial and natural radioactivity in edible mushrooms from Sao Paulo, Brazil. Journal of Environmental Radioactivity. 113: 150-154. doi:10.1016/j.jenvrad.2012.05.028.
  • Changizi V, Angaji M, Zare MR, Abbasnejad K. 2012. Evaluation of 226Ra, 232Th, 137Cs and 40K "Agaricus bisporus" activity in cultivated edible mushroom formed in Tehran Province- Iran. Iranian Journal of Medical Physics. 9 (4): 239-244.
  • CEC. 2002. Commission of the European Communities, Commission Regulation (EC) No. 221/2002 of 6 February 2002 amending regulation (EC) No. 466/2002 setting maximum levels for certain contaminants in foodstuffs, Official Journal of the European Communities, Brussels.
  • Demirbaş A. 2002. Metal ion uptake by mushrooms from natural and artificially enriched soils. Food Chem., 78: 89-93. doi:10.1016/S0308-8146(01)00389-2.
  • Falandysz J, Borovicka J. 2013. Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol., 97: 477-501. DOI 10.1007/s00253-012-4552-8.
  • Faweya EB, Ayeni MJ, Kayode J. 2015. Accumulation of natural radionuclides by some edible wild mushrooms in Ekiti State, Southwestern, Nigeria. World Journal of Nuclear Science and Technology. 5: wjnst.2015.52010. http://dx.doi.org/10.4236/
  • Gadd GM. 1994. Interactions of fungi with toxic metals. The Genus Aspergillus. 361-374. DOI: 10.1007/978-1-4899-0981-7_28.
  • García MÁ, Alonso J, Melgar MJ. 2009. Lead in edible mushrooms. Levels and bioaccumulation factors. Journal of Hazardous Materials. 167: 777-783. doi:10.1016/j.jhazmat.2009.01.058.
  • Gaso MI, Segovia UN, Morton O, Cervantes ML, Godinez L, Pena P, Acosta E. 2000. 137Cs and relationships with major and trace elements in edible mushrooms from Mexico. The Science of the Total 9697(00)00574-X. 73-89. doi:10.1016/S0048
  • Gast CH, Jansen E, Bierling J, Haanstra L. 1988. Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere. 17: 789-799. doi:10.1016/0045-6535(88)90258- 5.
  • Georgescu AA, Busuıoc G. 2011. Determination of heavy metals in several species of wild mushrooms and their influence on peroxidase activity. Lucrari ştiintifice. 54: 62-66.
  • Gorbunova IA, Koutzenogii KP, Kovalskaya GV, Chankina OV, Savchenko TI. 2009. Elemental composition of mushrooms from Gorny Altai. Contemporary Problems of Ecology. 2(1): 46-50. DOI: 10.1134/S1995425509010081.
  • Gwynn JP, Nalbandyan A, Rudolfsen G. 2013. 210Po, 210Pb, 40K and 137Cs in edible wild berries and mushrooms and ingestion doses to man from high consumption rates of these wild foods. Journal of Environmental Radioactivity. 116: 34-41. doi:10.1016/j.jenvrad.2012.08.016.
  • ICRP. 1990. Recommendations of the International Commission on Radiological Protection, 21 (1-3) publication 60.
  • Isildak Ö, Turkekul I, Elmastas M, Tuzen M. 2004. Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chem., 86(4): 547-552. doi:10.1016/j.foodchem.2003.09.007.
  • Isiloglu M, Merdivan M, Yilmaz F. 2001. Heavy metal contents in some macrofungi collected in the Northwestern part of Turkey. Environmental Contamination and Toxicology. 41: 1-7. DOI: 10.1007/s002440010215.
  • Kalac P, Wittingerova M, Staskova I, Simak M, Bastl J. 1989. Contents of mercury, lead and cadmium in mushrooms. Ceskoslovenska Hygiena, 34: 568-76. DOI:10.1016/0048- 9697(95)04850-2
  • Kalac P, Burda J, Staskova I. 1991. Concentrations of lead, cadmium, mercury, and copper in mushrooms in the vicinity of a lead smelter. Science and the Total Environment. 105: 109- 119. doi:10.1016/0048-9697(91)90333-A.
  • Kalac P, Niznanska M, Bevilaqua D, Staskova I. 1996. Concentrations of mercury, copper, cadmium and lead in fruiting bodies of edible mushrooms in the vicinity of a mercury smelter and a copper smelter. The Science of the Total Environment. 177: 251-258. PMID: 8584916.
  • Kalac P, Svoboda L. 2000. A review of trace element concentrations in doi:10.1016/S0308-8146(99)00264-2. Food Chem., 62: 273-281.
  • Kalac P. 2001. A review of edible mushroom radioactivity. Food Chemistry. 75(1): 29-35. doi:10.1016/S0308-8146(01)00171-6.
  • Kalac P. 2010. Trace element contents in European species of wild growing edible mushrooms: A review for the period 2000- 2009. Food Chemistry. 122(1): 2-15. doi:10.1016/j.foodchem. 2010.02.045.
  • Karahan G, Bayulken A. 2000. Assessment of gamma dose rates around Istanbul, Turkey. Environ. Radioact., 47: 213-221. doi:10.1016/S0265-931X(99)00034-X.
  • Karakelle B, Ozturk N, Kose A, Varinlioglu A, Erkol AY, Yılmaz F. 2002. Natural radioactivity in soil samples of Kocaeli Basin, Turkey. J. Radioanal. Nucl. Chem., 254(3): 649-651.
  • Krieger R. 1981. Radioactivity of Construction Materials. Betonwerk Fertigteil Technik. 47: 468-473.
  • Kurnaz A, Küçükömeroğlu B, Keser R, Okumusoglu NT, Korkmaz F, Karahan G, Çevik U. 2007. Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey). Applied Radiation and Isotopes. 65: 1281-1289. doi:10.1016/j.apradiso.2007.06.001.
  • Mamont-Ciesla K, Gwiazdowski B, Biernacka M, Zak A. 1982. Radioactivity of building materials in Poland. Vohra G. Pillai KC. Sadavisan S (Eds.), Natural Radiation Environment. Halsted Press. 551
  • Melgar MJ, Alonso J, Perez-Lopez M, Garcıa MA. 1998. Influence of some factors in toxicity and accumulation of Cd from edible wild macrofungi in NW Spain. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural 03601239809373156 439-455. DOI:10.1080/
  • Micelot D, Siobud E, Dore JV, Viel C, Poirier F. 1998. Update of metal content profiles in mushrooms: toxicological implications and tentative approach to the mechanism of bioaccumulation. Toxicon. 36: 1997-2012. doi:10.1016/S0041-0101(98)00131-7.
  • Mietelski JW, Dubchak S, B1azeja S, Anielska T, Turnau K. 2010. 137Cs and 40K in fruiting bodies of different fungal species collected in a single forest in southern Poland. Journal of Environmental Radioactivity. 101: 706-711. DOI: 10.1016/ j.jenvrad.2010.04.010.
  • Ouzouni PK, Veltsistas PG, Paleologos EK, Riganakos KA. 2007. Determination of metal content in wild edible mushroom species from regions of Greece. J. Food Compos. Anal., 2007: 480-486. doi:10.1016/j.jfca.2007.02.008.
  • Pekak C, Kaşık G, Demirel G. 2011. Chemical composition of two Lactarius species of wild growing in kestel (Kadınhanı-Konya) district. The Journal of Fungus. 2(1-2): 57-61. Available from 06.10.2015.
  • Pekşen A, Akdeniz H. 2012. Wild mushrooms as organic product. Duzce University Journal of Foresty. 8 (1): 34-40. Available from 16.11.2015.
  • Peter JS, Denis PH, Jeremy KN. 1985. The environmental chemistry of metals with examples from studies of the speciation of cadmium. Environmental Inorganic Chemistry, Weinheim: VCH Publishers, 1985, pp. 249-271.
  • Phillips R. 1981. Mushrooms and other fungi of great britain europe. London: Pan Books. ISBN-13: 978-0330264419.
  • Prasad MNV. Trace elements as contaminants and nutrients: consequences in ecosystems and human health. United States of America: A John Wiley and Sons, Inc., publication. ISBN: 978- 0-470-18095-2.
  • Rajalıngam P, MayakrıshnanV, Abdullah N, Sabaratnam V, Kuppusamy UR. 2013. In-vitro antioxidant properties of different varieties of mushrooms grown on rice grains. Agro FOOD Industry Hi Tech., 24: 66-69.
  • Rosa MML, Maihara VA, Taddei MHT, Silva MA, Ferreira MT. 2011. Determination of 228Th, 232Th and 228Ra in wild mushroom from a naturally high radioactıve region in Brazil. 2011 International Nuclear Atlantic Conference - INAC 2011, Belo Horizonte, MG, Brazil. 24-28.10. 2011. ISBN: 978-85- 99141-04-5.
  • Rudawska M, Leski T. 2005. Macro and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food Chemistry. 92(3): 499-506. doi:10.1016/j.foodchem.2004.08.017.
  • Rühm W, Kammerer L, Hiersche L, Wirth E. 1997. The 137Cs/134Cs ratio in fungi as an indicator of the major mycelium location in forest soil. Journal of Enrivonmental Radioactivity. 35(2): 129- 148. ISSN: 0265-931X.
  • Semreen MH, Aboul-Enein HY. 2011. Determination of heavy metal content in wild-edible mushroom from Jordan. Analytical Letters. 44: 932-941. DOI: 10.1080/00032711003790072.
  • Sesli E, Tuzen M. 1999. Levels of trace elements in the fruiting bodies of macrofungi growing in the East Black sea region of Turkey. Food Chem., 65: 453-460. doi:10.1016/S0308- 8146(98)00194-0.
  • Svoboda L, Chrastny V. 2008. Levels of eight trace elements in edible mushrooms from a rural area, Food Additives and Contaminants. 02652030701458519. 51-58. DOI: 10.1080/
  • Svoboda L, Zimmermannova K, Kalac P. 2000. Concentrations of mercury, cadmium, lead and copper in fruiting bodies of edible mushrooms in an emission area of a copper smelter and a mercury smelter. The Science of the Total Environment. 246(1): 61-67. doi:10.1016/S0048-9697(99)00411-8.
  • Szynkowska MI, Pawlaczyk A, Albinska J, Paryjczak T. 2008. Comparison of accumulation ability of toxicologically important metals in caps and stalks in chosen mushrooms. Polish Journal of Chemistry. 82: 313-319. ISSN: 0137-5083.
  • Taskin H, Karavus M, Ay P, Topuzoglu A, Hidiroglu S, Karahan G. 2009. Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. Journal of Environmental 10.1016/j.jenvrad.2008.10.012. 100: 49-53. DOI: The Union of Turkish Agricultural Chambers, 2015. http://www.tzob.org.tr/ Last acsess date: 15.12.2015.
  • Turhan Ş, Köse A, Varınlıoğlu A. 2007. Radioactivity levels in some wild edible mushroom species in Turkey. Isotopes in Environmental and Health Studies. 43 (3): 249-256. DOI: 10.1080/10256010701562794.
  • Turtiainen T, Brunfeldt M, Rasilainen T, Skipperud L, Valle L, Popic JM, Roos P, Sundell-Bergman S, Rosén K, Weimer R. 2014. Doses from natural radioactivity in wild mushrooms and berries to the Nordic population, Final Report from the NKS-B BERMUDA activity (Contract: AFT/B(13)5), NKS-294. ISBN 978-87-7893-370-6.
  • UNSCEAR. 1988. United Nations Scientific Committee on the Effect of Atomic Radiation, Sources, effects and risk of ionizing radiation, United Nations, New York.
  • UNSCEAR. 2000. United Nations Scientific Committee on the Effect of Atomic Radiation, Sources, effects and risk of ionizing radiation, United Nations, New York.
  • Wang C, Hou Y. 2011. Determination of trace elements in three mushroom samples of basidiomycetes from Shandong, China. Biol Trace Elem Res., 142: 843-847. DOI 10.1007/s12011-010- 8784-0.
  • WHO. 1989. World Health Organization, Evaluation of certain food additives and contaminants, in: Thirty-third Report of the Joint FAO/WHO Expert Committee on Food Additives.
  • WHO. 1999. Joint FAO/WHO Expert Committee on Food Additives, Summary and conclusions, in: 53rd Meeting, Rome. June 1-10. 1999.
  • Vetter J. 1993. Toxic elements in certain higher fungi. Food Chemistry. 48(2): 207-208. doi:10.1016/0308-8146(93)90060- S.
  • Vetter J. 2004. Arsenic content of some edible mushroom species. European Food Research and Technology. 219: 71-74. DOI 10.1007/s00217-004-0905-6.
  • Yamac M, Yıldız D, Sarıkürkcü C, Çelikkollu M, Solak MH. 2007. Heavy metals in some edible mushrooms from the central Anatolia, doi:10.1016/j.foodchem.2006.07.041. Chemistry. 103: 263-267.
  • Yang Y, Wu X, Jiang Z, Wang W, Lu J, Lin J, Wang L, Hsia Y. 2005. Radioactivity concentrations in soils of the Xiazhuang granite area. China Appl. Radiat. Isot., 63: 255-259. PMID: 15922605.
  • Yilmaz F, Isıloglu M, Merdivan M. 2003. Heavy metals levels in some macrofungi. Turkish J. Botany. 27:45-56.
  • Zhuang PB, McBride M, Xia H, Li N, Li Z. 2008. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. The Science of the Total Environment. doi:10.1016/j.scitotenv.2008.10.061. 407(5): 1551-1561.
  • Zurera-Cosano G, Rincon-Leon F, Pozo-Lora R. 1987. Lead and cadmium content of some edible mushrooms. Journal of Food Quality. 10: 311-317. DOI: 10.1111/j.1745- 4557.1988.tb00916.x.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)