Comparison of the Observed Rainfall with Rainfall Estimated by CLIGEN Climate Model in terms of Drought Analysis

Standardized Precipitation Index (SPI) is used to determine dry and humid periods according to the cumulative probability method at different time scales. . In this study, the rainfall data between the years of 1980-2018 belonging to of Kayseri Meteorology Station was simulated by CLIGEN stochastic climatic data generator. SPI indices calculated by using observed and simulated precipitation were evaluated with the statistical methods at the time scales of 3-, 6-, 9- and 12- months. The SPI values of 3-, 6-, 9- and 12- month which are observed and simulated with CLIGEN are close to each other and the performance of the model is very high in calculating the SPI values of these time series. However, as the time period increased, the model's representative ability decreased.

CLIGEN İklim Modeli ile Tahmin Edilen Yağmur ile Gözlenen Yağmurun Kuraklık Analizi Açısından Karşılaştırılması

Standart Yağış İndeksi (SYİ) farklı zaman ölçeklerinde, kümülatif olasılık yöntemine göre kurak ve nemli periyodları belirlemek amacıyla uygulanan bir yöntemdir. Bu çalışmada, Kayseri iline ait 1980-2018 yılları arasındaki yağmur verisi CLIGEN iklim modeli ile simüle edilmiştir ve daha sonra her iki veri seti SYİ yöntemine göre 3-, 6-, 9- ve 12- aylık kuraklık ve nemlilik şiddetini ifade eden indeks değerleri elde edilmiştir. Hem gözlenen hem de simüle edilen SPI değerleri karşılaştırılmıştır. 3-, 6-, 9- ve 12- aylık SPI değerleri birbirine yakın olup, modelin bu zaman serilerinin SPI değerlerini hesaplamada performansı oldukça yüksektir. Ancak zaman aralığı arttıkça modelin temsil yeteneği düşüş göstermektedir.

___

Al-Mukhtar M. Dunger V. Merkel B. 2014. Evaluation of the climate generator model CLIGEN for rainfall data simulation in Bautzen catchment area. Germany. Hydrology Research. 45(4-5): 615-630.

Belayneh A. Adamowski J. 2012. Standard Precipitation Index Drought Forecasting Using Neural Networks. Wavelet Neural Networks. and Support Vector Regression. Standard Precipitation Index Drought Forecasting Using Neural Networks. Wavelet Neural Networks. and Support Vector Regression. doi:10.1155/2012/794061.

Demir S. Oğuz İ. Ciba ÖF. 2018. Long Years Precipitation Parameters by CLIGEN Precipitation Model in Tokat Province. Iğdır University Journal of the Institute of Science and Technology. 8(1): 319-328.

Gibbs WJ. Maher JV. 1967. Rainfall Deciles as Drought Indicators.Commonwealth of Australia: Melbourne. Bureau of Meteorology Bulletin No. 48.

Giddings L. Soto M. Rutherford BM. Maarouf A. 2005. Standardized Precipitation Indekx Zones for Mexico. Atmosfera. 33-56.

Guttman NB. (1999). Accepting the Standardized Precipitation Index: A calculation algorithm. Journal of the American Water Resources Association. 35: 311-322.

Kapluhan E. 2013. Drought and Drought ın Turkey Effect of Agriculture. Marmara Coğrafya Dergisi. 27: 487-510.

Kumar MN. Murthy CS. Sesha Saib MVR. Royb PS. 2009. On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorol. Appl. 16: 381–389.

McKee TB. Doesken NJ. Kleist J. 1993. The Relationship of Drought Frequency and Duration of time Scales. Presented at the Eighth Conference on Applied Climatology. American MeteorologicalSociety: Anaheim. CA; 179 – 186.

Meteorological Service. 2019. https://www.mgm.gov.tr /veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H. (22.09.2019).

Nearing MA. Jetten V. Baffaut C. Cerdan O. Couturier A. Hernandez M. Le Bissonnais Y. Nichols MH. Nunes JP. Renschler CS. 2005. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61. 131–154.

Nicks AD. Lane LJ. Gander GA. 1995. CLIGEN weather generator. In: Flanagan. D.C. Nearing. M.A. (Eds.). USDA–Water Erosion Prediction Project: HillslopeProfile and Watershed Model Documentation. USDA–ARS National Soil Erosion Research Laboratory. West Lafayet. pp. 2.1–2.22.

Nicks AD. Lane LJ. 1989. Weather Generator. Chapter 2. In: USDA-Water Erosion Prediction Project: Hillslope Profile Version. NSERL Report No. 2 (L. J. Lane & M. A. Nearing. eds). USDA-ARS National Soil Erosion Research Laboratory. West Lafayette. Indiana. pp. 2.1–2.22.

Oğuztürk G. Yıldız O. 2014. Drought Analysis for Different Time Periods the City of Kırıkkale. International Journal of Engineering Research and Development. 6(2).

Palmer WC. 1965. Meteorological drought. Weather Bureau ResearchPaper No. 45. U.S. Department of Commerce: Washington. D.C.

Shafer BA. Dezman LE. 1982. Development of a Surface Water Supply Index (SWSI) to Assess the Severity of Drought Conditions in Snowpack Runoff Areas. Proceedings of the Western Snow Conference. Colorado State University: Fort Collins. CO; 164 – 175.

Shah R. Bharadiya N. Manekar. V. 2015. Drought Index Computation Using Standardized Precpitation Index (SPI) Method for Surat District. Gujarat. Aqutic Procedia. 4: 1243- 1249.

Turan ES. 2018. Türkiye'nin İklim Değişikliğine Bağlı Kuraklık Durumu. Journal of Natural Hazards and Environment. 4(1): 63-69.

Türkeş M. Tatlı. H. 2009. Use of the Standardized Precipitation Index (SPI) and a Modified SPI for Shaping the Drought Probabilities over Turkey. Internatıonal Journal of Clımatology. 29: 2270 – 2282.

Wu H. Hayes MJ. Welss A. Hu Q. 2001. An Evaluation the Standardized Precipitation Index. the China-Z Index and the Statistical Z-score. International Journal of Climatology. 21: 745 – 758.

Wu H. Hayes MJ. Wilhite DA. Svoboda MD. (2005) The effect of the length of record on the standardized precipitation index calculation. Int J Climatol 25: 505–520.

Yetmen H. 2013. Van Lake Basin Drought Analysis. 21. Yüzyılda Eğitim ve Toplum. 3(5): 184-198.

Yu B. 2005. Adjustment of CLIGEN Parameters to Generate Precipitation. Change Scenarios in Southeastern Australia. Catena 61. 196–209.