Antimicrobial, Antioxidant Activities and Total Phenolic Contents of the Traditional Turkish Beverages Produced by Using Grapes

In the present study, antimicrobial effects of traditional beverages produced from grapes such as traditional grape pickles, grape juice, home-made hardaliye, and commercially produced hardaliye were investigated using microdilution method against Staphylococcus aureus ATCC 6538P, Escherichia coli ATCC 25922, Salmonella Typhimurium NRRL B4420, Bacillus cereus ATCC 10876, Saccharomyces cerevisiae NRRL Y- 12632, Lactobacillus acidophilus La-5 and L. rhamnosus LGG. In addition, total phenolic content was measured by the Folin-Ciocalteau method, and antioxidant activities of grape products were evaluated using DPPH assay. Results showed that grape containing beverages have antimicrobial effects on S. aureus, E. coli, S. typhimurium and B. cereus at various minimum inhibitory concentration (MIC) values in the range of 4.53- 150 mg/mL. The lowest MIC value of 4.53 mg/mL was obtained against E. coli for home-made hardaliye. MIC values of the traditional grape pickles were determined as 4.69 mg/mL and 9.38 mg/mL against S.aureus and E.coli, respectively. On the other hand, traditional grape pickles showed weak inhibitory effects against B.cereus with MIC value of 150 mg/mL. The bactericidal effect of these grape products was not detected for any of the test microorganisms however traditional foods produced by using grapes were showed inhibitory effects at different concentrations against tested microorganisms except for probiotics and the yeast. The total phenolic contents of the grape products were within the range of 865.27-2193.08 mg gallic acid equivalent (GAE)/L. Free radical scavenging activities of grape samples ranged from 46% to 90% and the grape juice was found to have the highest antioxidant activity. In conclusion, grape beverages have the potential to act as a antimicrobial and antioxidant agents for use as a natural antimicrobial and antioxidant product in the food industry.

Üzüm Kullanılarak Üretilen Geleneksel Türk İçeceklerinin Antimikrobiyal, Aktioksidan Etkileri ve Toplam Fenolik İçerikleri

Bu çalışmada üzüm turşusu, üzüm suyu, ev yapımı ve ticari olarak üretilmiş hardaliye gibi üzüm ile üretilen geleneksel içeceklerin mikrodilüsyon yöntemi kullanılarak Staphylococcus aureus ATCC 6538P, Escherichia coli ATCC 25922, Salmonella Typhimurium NRRL B4420, Bacillus cereus ATCC 10876, Saccharomyces cerevisiae NRRL Y-12632, Lactobacillus acidophilus La-5 ve L. rhamnosus LGG’ye karşı antimikrobiyal etkisi araştırılmıştır. Ayrıca, üzüm ürünlerinin toplam fenolik içeriği Folin-Ciocalteau yöntemi ile ölçülmüş ve antioksidan aktiviteleri DPPH yöntemi ile değerlendirilmiştir. Sonuçlar, üzüm içeren bu içeceklerin S. aureus, E. coli, S. Typhimurium ve B. cereus üzerinde 4.53-150 mg/mL aralığında minimum inhibisyon konsantrasyonu (MİK) değerlerinde antimikrobiyal etkiye sahip olduğunu göstermiştir. Ev yapımı hardaliyenin en düşük MİK değerinin 4,53 mg/mL ile E. coli’ye karşı olduğu belirlenmiştir. Geleneksel üzüm turşunun S.aureus ve E.coli için MİK değerleri sırasıyla 4,69 mg/mL ve 9,38 mg/mL olarak belirlenmiştir. Diğer yandan, geleneksel üzüm turşusu, 150 mg/mL MİK değeri ile B.cereus'a karşı zayıf inhibisyon etkisi göstermiştir. Kullanılan bu üzüm ürünlerinin test edilen mikroorganizmaların hiçbirinde bakterisidal etkisi tespit edilememiştir, ancak üzüm kullanılarak üretilen geleneksel gıdaların, probiyotikler ve maya dışındaki test edilen mikroorganizmalara karşı farklı konsantrasyonlarda inhibe edici etki gösterdiği görülmüştür. Üzüm ürünlerinin toplam fenolik içerikleri 865,27-2193,08 mg gallik asit eşdeğeri (GAE)/L aralığındadır. Üzüm örneklerinin serbest radikal süpürme aktiviteleri %46 ile %90 arasında değişmiş olup, üzüm suyunun en yüksek antioksidan aktiviteye sahip olduğu bulunmuştur. Sonuç olarak, üzüm içeren geleneksel içeceklerin antimikrobiyal ve antioksidan ajan olarak kullanım potansiyelinin bulunduğu ve gıda sektöründe doğal bir antimikrobiyal ve antioksidan ürün olarak kullanılabileceği saptanmıştır.

___

Adámez JD, Samino EG, Sánchez EV, González-Gómez D. 2012. In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control 24(1-2): 136-141. DOI: 10.1016/j.foodcont. 2011.09.016.

Altay F, Karbancıoglu FG, Daskaya CD, Heperkan D. 2013. A review on traditional Turkish fermented non-alcoholic beverages: microbiota, fermentation process and quality characteristics. Int. J. Food Microbiol. 167(1): 44-56.DOI: 10.1016/j.ijfoodmicro.2013.06.016.

Amoutzopoulos B, Löker GB, Samur G, Çevikkalp SA, Yaman M, Köse T, Pelvan E. 2013. Effects of a traditional fermented grape‐based drink ‘hardaliye’ on antioxidant status of healthy adults: a randomized controlled clinical trial. J. Sci. Food Agric. 93(14): 3604-3610. DOI: 3604-3610. 10.1002/jsfa.6158.

Arici M, Coskun F. 2001. Hardaliye: Fermented grape juice as a traditional Turkish beverage. Food Microbiol. 18(4): 417- 421. DOI: 10.1006/fmic.2001.0413.

Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Biomed. Anal. 6(2): 71-79. DOI: 10.1016/j.jpha. 2015.11.005.

Baydar NG, Özkan G, Sağdiç O. 2004. Total phenolic contents and antibacterial activities of grape (Vitis vinifera L.) extracts. Food Control 15(5): 335-339. DOI: 10.1016/S0956- 7135(03)00083-5.

Baydar NG, Sagdic O, Ozkan G, Cetin S. 2006. Determination of antibacterial effects and total phenolic contents of grape (Vitis vinifera L.) seed extracts. Int .J. Food Sci. Technol. 41(7): 799-804. DOI: 10.1111/j.1365-2621.2005.01095.x.

Burin VM, Falcão LD, Gonzaga LV, Fett R, Rosier JP, Bordignon-Luiz MT. 2010. Colour, phenolic content and antioxidant activity of grape juice, Food Sci. Technol. 30(4): 1027-1032. DOI: 10.1590/S0101-20612010000400030.

Cook BI, Wolkovich EM. 2016. Climate change decouples drought from early wine grape harvests in France. Nat. Clim. Change. 6(7): 715-719. DOI: 10.1038/NCLIMATE2960.

Coskun F. 2017. A traditional Turkish fermented non-alcoholic grape-based beverage, “Hardaliye”. Beverages, 3(2): 1 -11. DOI: 10.3390/beverages3010002.

Coşkun F, Arıcı M, Gulcu M, Çelikyurt G, Mırık M. 2018. Physicochemical, functional and microbiological properties of hardaliye beverages produced from different grapes and collected from different households. J. Agric. Sci. 24(2): 278- 285. DOI: 10.15832/ankutbd.446458.

da Silva Padilha CV, Miskinis GA, de Souza MEAO, Pereira GE, de Oliveira, D., Bordignon-Luiz MT, dos Santos Lima M. 2017. Rapid determination of flavonoids and phenolic acids in grape juices and wines by RP-HPLC/DAD: Method validation and characterization of commercial products of the new Brazilian varieties of grape. Food Chemistry, 228: 106- 115. DOI: 10.1016/j.foodchem.2017.01.137.

Dani C, Oliboni LS, Vanderlinde R, Bonatto D, Salvador M, Henriques JAP, 2007. Phenolic content and antioxidant activities of white and purple juices manufactured with organically-or conventionally-produced grapes. Food Chem. Toxicol. 45(12): DOI: 2574-2580. 10.1016/j.fct.2007.06.022.

Dávalos A, Bartolomé B, Gómez-Cordovés C. 2005. Antioxidant properties of commercial grape juices and vinegars. Food Chemistry, 93(2): 325-330. DOI: 10.1016/j.foodchem. 2004.09.030.

Einbond LS, Reynertson KA, Luo XD, Basile MJ, Kennelly EJ. 2004. Anthocyanin antioxidants from edible fruits. Food Chemistry, 84: 23–28. DOI: 10.1016/S0308-8146(03)00162-6.

Faria SBA, de Souza VR, Dias JF, Moreira NX, de Azeredo, VB. 2016. Effect of grape juice consumption on antioxidant activity and interleukin-6 concentration in lactating rats. Nutr. Hosp. 33(6): 1418-1420. DOI: 10.20960/nh.804.

Filocamo A, Bisignano C, Mandalari G, Navarra M. 2015. In vitro antimicrobial activity and effect on biofilm production of a white grape juice (Vitis vinifera) extract. J. Evid. Based Complementary Altern. Med. 1-5. DOI: 10.1155/2015/ 856243.

Frankel EN, Bosanek CA, Meyer AS, Silliman K, Kirk LL. 1998. Commercial grape juices inhibit the in vitro oxidation of human low-density lipoproteins. J. Agric. Food Chem. 46(3): 834-838. DOI: 10.1021/jf9707952.

Furiga A, Lonvaud-Funel A, Badet C. 2009. In vitro study of antioxidant capacity and antibacterial activity on oral anaerobes of a grape seed extract. Food Chem. 113(4): 1037- 1040. DOI: 10.1016/j.foodchem.2008.08.059.

Göral S. 2019. Production of grape pickle using Lactobacillus acidophilus and investigating the inhibition effect of the product on Escherichia coli and Bacillus cereus, Ege University, Graduate School of Natural and Applied Science, MSc in Food Engineering, Izmir, Turkey.

Granato D, de Magalhães Carrapeiro M, Fogliano V, van Ruth SM. 2016. Effects of geographical origin, varietal and farming system on the chemical composition and functional properties of purple grape juices: A review. Trends Food Sci Technol. 52: 31-48. DOI: 10.1016/j.tifs.2016.03.013.

Gutierrez J, Barry-Ryan C, Bourke P. 2009. Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiol. 26(2): 142–150. DOI:10.1016/j.fm.2008.10.008.

Jayaprakasha GK, Selvi T, Sakariah KK. 2003. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res. Int. 36(2): 117-122. DOI:1016/S0963- 9969(02)00116-3.

Jung EJ, Youn DK, Lee SH, No HK, Ha JG, Prinyawiwatkul W. 2010. Antibacterial activity of chitosans with different degrees of deacetylation and viscosities. Int. J. Food Sci. Technol. 45(4): 676-682. DOI: 10.1111/j.1365-2621.2010. 02186.x.

Kao TT, Tu HC, Chang WN, Chen BH, Shi YY, Chang TC, Fu TF. 2010. Grape seed extract inhibits the growth and pathogenicity of Staphylococcus aureus by interfering with dihydrofolate reductase activity and folate-mediated onecarbon metabolism. Int. J. Food Microbiol. 141(1-2): 17-27. DOI: 10.1016/j.ijfoodmicro.2010.04.025.

Margraf T, Santos ÉNT, de Andrade EF, van Ruth SM, Granato D. 2016. Effects of geographical origin, variety and farming system on the chemical markers and in vitro antioxidant capacity of Brazilian purple grape juices. Food Res. Int. 82: 145-155. DOI:1016/j.foodres.2016.02.003.

Marsh AJ, Hill C, Ross RP, Cotter PD. 2014. Fermented beverages with health-promoting potential: past and future perspectives. Trends Food Sci. Technol. 38(2): 113-124. DOI: 10.1016/j.tifs.2014.05.002.

Miliauskas G, Venskutonis PR, van Beek TA. 2004. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 85(2): 231–237. DOI: 10.1016/j.foodchem.2003.05.007.

Mohammed FS, Akgul H, Sevindik M, Khaled BMT. 2018. Phenolic content and biological activities of Rhus coriaria var. zebaria. Fresen. Environ. Bull. 27(8): 5694-5702.

Monagas M, Gómez-Cordovés C, Bartolomé B, Laureano O, Ricardo da Silva JM. 2003. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon. J. Agric. Food Chem. 51(22): 6475-6481. DOI: 10.1021/jf030325+.

No HK, Park NY, Lee SH, Meyers SP. 2002. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 74(1-2): 65-72. DOI: 10.1016/S0168-1605(01)00717-6.

Öncül N, Karabıyıklı Ş. 2016. Survival of foodborne pathogens in unripe grape products. LWT-Food Sci. Technol. 74: 168- 175. DOI: 10.1016/j.lwt.2016.07.043.

Panghal A, Janghu S, Virkar K, Gat Y, Kumar V, Chhikara N. 2018. Potential non-dairy probiotic products–A healthy approach. Food Biosci. 21: 80-89. DOI: 10.1016/j.fbio.2017.12.003.

Pehlivan M, Sevindik M. 2018. Antioxidant and antimicrobial activities of Salvia multicaulis. Turkish Journal of Agriculture-Food Science and Technology 6(5): 628-631.

Pehlivanoğlu H, Gündüz HH, Özülkü G, Demirci M, Demirci M. 2015. An investigation of antimicrobial activity of wheat grass juice, barley grass juice, hardaliye and boza. Int. J. Sci Res. 2(1): 8-14. ISSN: 2200-9833.

Raybaudi‐Massilia RM, Mosqueda‐Melgar J, Soliva‐Fortuny R, Martín‐Belloso O. 2009. Control of pathogenic and spoilage microorganisms in fresh‐cut fruits and fruit juices by traditional and alternative natural antimicrobials. Compr. Rev. Food Sci. Food Saf. 8(3): 157-180. DOI: 10.1111/j.1541-4337.2009.00076.x.

Rhodes PL, Mitchell JW, Wilson MW, Melton LD. 2006. Antilisterial activity of grape juice and grape extracts derived from Vitis vinifera variety Ribier. Int. J. Food Microbiol. 107(3): 281-286. DOI: 10.1016/j.ijfoodmicro.2005.10.022.

Romulo A, Zuhud EAM, Rondevaldova J, Kokoska L. 2018. Screening of in-vitro antimicrobial activity of plants used in traditional Indonesian medicine. Pharm. Biol. 56(1):287-293. DOI: 10.1080/13880209.2018.1462834.

Sanhueza L, Tello M, Vivanco M, Mendoza L, Wilkens M. 2014. Relation between antibacterial activity against food transmitted pathogens and total phenolic compounds in grape pomace extracts from Cabernet Sauvignon and Syrah varieties. J. Adv. Microbiol. 4(5): 225-232. DOI: 10.4236/aim.2014.45029.

Serra AT, Matias AA, Nunes AV, Leitão MC, Brito D, Bronze R, Silva S, Pires A, Crespo MT, San Ramoa MV, Duarte CM. 2008. In vitro evaluation of olive-and grape-based natural extracts as potential preservatives for food. Innov. Food Sci. Emerg. Technol. 9(3): 311-319. DOI: 10.1016/j.ifset.2007.07.011.

Sevindik M, Akgul H, Pehlivan M, Selamoglu Z. 2017. Determination of therapeutic potential of Mentha longifolia ssp. longifolia. Fresen. Environ. Bull. 26(7): 4757-4763.

Singh RP, Chidambara Murthy KN, Jayaprakasha GK. 2002. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J. Agric. Food Chem. 50(1): 81-86. DOI: 10.1021/jf010865b.

Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3), 144-158.

Soares SE. 2002. Ácidos fenólicos como antioxidantes. Revista de Nutrição, 15(1): 71–81. ISSN: 1415-5273.

Soliva-Fortuny RC, Martı́n-Belloso O. 2003. New advances in extending the shelf-life of fresh-cut fruits: a review. Trends Food Sci Technol. 14(9): 341-353. DOI: 10.1016/S0924- 2244(03)00054-2.

Spinelli FR, Dutra SV, Carnieli G, Leonardelli S, Drehmer AP, Vanderlinde R. 2016. Detection of addition of apple juice in purple grape juice. Food Control 69: 1-4. DOI: 10.1016/j.foodcont.2016.04.005.

Toaldo IM, de Gois JS, Fogolari O, Hamann D, Borges DL, Bordignon-Luiz MT. 2014. Phytochemical polyphenol extraction and elemental composition of Vitis labrusca L. grape juices through optimization of pectinolytic activity. Food Bioprocess Tech. 7(9): 2581-2594. DOI: 10.1007/s11947-014-1288-8.