Bazı Atık Tohum Yağlarının Kimyasal Karakterizasyonunun, Antioksidan Aktivite ve Oksidatif Stabilitelerinin Değerlendirilmesi

Bu çalışmada, kiraz, vişne, dut ve erik çekirdek yağlarının yağ asidi komposizyonu, antioksidan aktivitesi, toplam fenolik madde ve oksidatif stabilitesi araştırılmıştır. Oleik asit (%42,9-67,3), kiraz, vişne, ve erik çekirdek yağların da en fazla bulunan yağ asidi olarak belirlenmiş olup ve onu linoleik asit izlemiştir (%23,4-41,8). Linoleik asit (%77,6) ise dut çekirdek yağında en fazla bulunan yağ asidi olarak belirlenmişitir. Kiraz, vişne ve erik çekirdek yağlarında, ?-tokoferol, başlıca tokoferol izomeri olarak belirlenmiş olup, değeri 579,9'dan 605 mg/kg yağ'a kadar değişmekte iken, dut çekirdek yağında ?- tokoferol, 1354mg/kg yağ değeri ile başlıca tokoferol izomeri olarak tespit edilmiştir. Erik çekirdeği yağı, 2,2-diphenyl-1-picrylhydrazyl (DPPH) ve 2,2'-azino-bis-(3- ethylbenzthiazoline-6-sulfonic acid) (ABTS) testlerinin her ikisinde de en yüksek antioksidan aktivite değerine sahiptir. kiraz, vişne, dut ve erik çekirdek yağları lipid hidroperoksit ve TBARS (2-tiobarbuturik asit-reaktif substant) oluşumları arasında önemli bir fark yoktur. Ayrıca, erik çekirdeği yağı en yüksek indüksiyon periyodu değerine (15,1 saat) sahip olup onu, dut (4,1 saat) kiraz (1,5 saat) ve vişne (1,3 saat) çekirdek yağları izlemektedir. Bu araştırma sonuçları bu atık çekirdek yağlarının yüksek antioksidan kapasite ve tokoferol içeriğine sahip olduğunu ve böylelikle bu yağlardan gıda endüstrisinde faydalanabiliceğini göstermiştir.

Evaluation of Chemical Characterization, Antioxidant Activity and Oxidative Stability of Some Waste Seed Oil

In this study, fatty acid composition, antioxidant activity, total phenolic compounds (TPC) and oxidative stability of cherry seed (SCO), sweet cherry seed (SCSO), mulberry seed (MSO) and plum seed oil (PSO) were determined. Oleic acid was determined as primary fatty acid (42.9-67.3%), and followed by linoleic acid (23.4-41.8%) for SCO, SCSO and PSO. Linoleic acid was determined as primary fatty acid in MSO. γ- tocopherol was determined the main and highest tocopherol isomers varied from 579.9 to 605 mg/kg oil in SCO, SCSO and PSO, whereas δ-tocopherol was determined main tocopherol isomer with 1354mg/kg oil value in MSO. Plum seed oil (PSO) was the highest antioxidant activity values in both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assays. There was no significant differences in lipid hydroperoxide and TBARS (2-thiobarbituric acid-reactive substance) formation among SCO, SCSO and MSO. PSO had the highest induction period (15.1 h), followed by MSO (1.4 h), SCSO (1.5 h), SCO(1.3 h). PSO was oxidatively more stable than the other oil samples. This research shows that these waste seed oils have high antioxidant capacity and tocopherol content, so they could be used in food industry.

___

  • Abuzaytoun R, Shahidi F. 2006. Oxidative Stability of Flax and Hemp Oils. J. Am. Oil Chem. Soc. 83: 855—861.
  • Bondet V, Brand—Williams W, Berset C. 1997. Kinetics and mechanism of antioxidant action using the DPPH free radical method. Leb. Wiss Techn., 30: 609—615.
  • Bozan B; Temelli F. 2008. Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils. Bioresource Tech., 99: 6354—6359
  • Djilas S, Brunet J, Cetkoviö G. 2009. By—Products of Processing As Source of Phytochemicals. Chem. Ind. &Chem. Eng. Ouar., 15: 191—202.
  • Durmaz G, Karabulut I, Topcu A, Asilturk M, Kutlu T. 2009. Roasting—related changes in oxidative stability and antioxidant capacity of apricot kernel oil. Am oil Chem Soc. 87: 401—409.
  • Emad SS. 2006. Antioxidative effect of extracts from red grape seed and peel on lipid oxidation in oils of sunflower. LWT— Food Sci. Tech., 39: 883—892.
  • El—Adawy TA, Taha KM. 2001. Characteristic and composition of different seed oils and flours. Food Chem., 74:47—54
  • FAO. Statiscial Database, http:// www.fao.org/(Accessed May 2016) Farhoosh R, Moosavi SMR. 2007. Rancimat test for the assessment of used frying oils quality. J. Food Lip., 14: 263—271.
  • Gutfınger T. 1981, Polyphenols in olive oil. Am Oil Chem Soc., 58: 966—968.
  • Jayaprakasha GK, Singh RP, Sakariah KK. 2001. Antioxidant activity of grape seed (Vitis vinifera) exracts on peroxidation models in vitro, Food Chem., 73: 285—290.
  • Jennings BH, Akoh CC. 1999. Enzymatic modification of triacylglycerols of high eicosapentaenoic and docosahexaenoic acids content to produce structured lipids. J.Am. Oil Chem. Soc. 76: 1133—1137.
  • Kowalski B, Ratusz K, Kowalska D, Bekas W. 2004. Determination of the oxidative stability of vegetable oils by differential scanning calorimetry and rancimat measurements. Eur. J. Sci. Tech., 106: 165—169.
  • Matthaus B. 2002. Antioxidant Activity of Extracts Obtained from Residues of Different Oilseeds. Agr. Food Chem. 50: 3444—3452.
  • Moure A, Cruz JM, Franco D, Dominguez JM, Sineiro J, Dominguez H, Nunez MJ, Parajo JC. 2001. Natural antioxidants from residual source. Food Chem., 72: 145—171.
  • Official Methods of Analyses. 1990. 16th ed., Association of Official Analytical Chemists (AOAC):Gaithersburg, MD Parker TD, Adams DA, Zhou K, Harris M, Yu L. 2003. Fatty acid composition and oxidative stability of cold—pressed edible seed oils, Food Sci., 68: 1240—1243.
  • Peschel W, Sa'nchez—Rabaneda F, Diekmann W, Plescher A, Gartzia I, Jimenez D, Lamuela—Raventos R, Buxaderas S, Codina C. 2006. An industrial approach in the search of natural antioxidants from vegtable and fruit waste. Food Chem. 97: 137—150.
  • Ramadan MF; Moersel JT. 2006. Screening of antiradical action of vegetable oils. Food Comp. Anal.,19: 838—842.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice— Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Bio.l Med., 26: 1231— 1237.
  • Schieber A, Stintzing FC, Carle R. 2001. By—products of plant food processing as source of functional compounds— recent developments. Food Sci &Tech. 12: 401—413.
  • Schmidt S, Pokorny J. 2005. Potential application of oilseeds as source of antioxidants for food lipids—a Review. Czech J.Food Sci., 23: 93—102.
  • Schubert SY, Lansky EP, Neeman I. 1999, Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oiland fermented juice flavonoids. Ethnop., 66: 11—17.
  • Turan S, Topcu A, Karabulut l, Vural H. Hayaloglu AA. 2007, Fatty acid, triacylglycerol, phytosterol, and tocopherol variations in kernel oil of Malatya apricots from Turkey. J. Agric. Food Chem. 55: 10787—10794.
  • Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M. 2002. Free radical scavenging properties of wheat extract. J. Agric. Food Chem., 50: 1619—1624.
  • Williams R, Elliot M. 1997. Antioxidants in grapes and wine: Chemistry and health effects. In F. Shahidi (Ed.), Natural antioxidants: Chemistry, health and applications (pp.15— 173). Illinois: American Oil Chemical Society
  • Presleatanov M, Janakieva I.. 1998. Phospholipid composition of some fruit—stone oils of Rosaceae species. FetI/Lipid. 100: 12—3 15
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)