Arbüsküler Mikorizal Funguslar (AMF)’ın Ağır Metal ve Tuz Stresi Üzerine Etkileri

Arbüsküler mikorizal funguslar (AMF) bitki kökleri ile simbiyotik yaşayan, toprak ve bitkiye faydalı mikroorganizmalardır. Bu çalışmada toprak ve bitkiye yararı olduğu bilinen AMF’ın topraktaki ağır metal ve tuzluluk stresi üzerine bazı etkileri değerlendirilmiş ve çözüm önerileri ortaya konulmuştur. Toprakta yüksek konsantrasyonlardaki ağır metal ve tuz birikimi, mikrobiyal çeşitlilik ve mikrobiyal aktiviteyi olumsuz etkilerken, kontamine olmuş topraklardan ağır metal ve tuz birikiminin fiziksel ve kimyasal yöntemlerle uzaklaştırılması hem pahalı hem de etkisi düşük bir yoldur. Bu bağlamda, AMF bitkilerdeki ağır metal ve tuz stresinin en aza indirilmesi için büyük önem arz etmektedir. AMF, bitki fizyolojisi ve kök morfolojisini değiştirebilme, geniş bir hif ağı vasıtasıyla topraktan su ve besin maddelerinin alımını artırabilme, kimyasal gübre kullanımının azaltma, bitki gelişimini teşvik edici diğer toprak mikroorganizmalarıyla etkileşime girebilme, stres faktörüne bağlı olarak bitkideki bazı dayanıklılık parametrelerinin aktive edebilme ve ürettikleri glomalin ile toprağın yapısını ve özelliklerini iyileştirebilme gibi birçok özelliğe sahiptir. AMF, geleneksel mücadele yöntemlerine göre çevre dostu olup uygun bitki-fungus kombinasyonlarının kullanılması ile bu uygulamaların başarı şansı daha da artacaktır.

Effects of Arbuscular Mycorrhizal Fungi (AMF) on Heavy Metal and Salt Stress

The Arbuscular mycorrhizal fungi (AMF) are microorganisms that live symbioticallywith plant roots and have many benefits to soil and plants. In this study, some effects ofAMF which are known to be soil and plant beneficial, have been evaluated and solutionproposals have been put forward against heavy metal and salinity stress in the soil. Saltaccumulation and high concentrations of heavy metal in the soil affects negatively themicrobial diversity and activity. Removal of salt acumulation and heavy metal fromcontaminated soil by chemical and physical methods is both very expensive andineffective. Therefore, AMF are important for alleviating the heavy metal and salt stressin plants. AMF can alter plant physiology and root morphology, increase the uptake ofnutrients and water from the soil through an extensive hyphal network, decrease the useof chemical fertilizer, interact with other soil microorganisms plant growth promoting,induce of some resistance parameters in the plants and produce the glomalin whichdevelops the properties and structure of soil. AMF are eco-friendly solutions according totraditional methods and the use of suitable plant-fungi combinations increases thechances of success of these applications.

___

  • Akça H, Karakurt H, Akbin G, Solak H. 2009. İzmir Yöresindeki Doğal Kızılçam Ormanlarında Ektomikorizal Mantarların Belirlenmesi. T.C. Çevre ve Orman Bakanlığı Ege Ormancılık Araştırma Müdürlüğü. Teknik Bülten. No:44. İzmir.
  • Alarcόn A, Davies FT. Autenrieth RL, Zuberer DA. 2008. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleumcontaminated soil. International Journal of Phytoremed., 10: 251-263.
  • Al-Karaki GN, Al-Raddad A. 1997. Effect of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza., 7: 83–88.
  • Asghari HR. 2004. Effects of Arbuscular-Mycorrhizal Fungal Colonization Management of Saline Lands. School of Earth and Environmental Sciences. The University of Adelaide South Australia.
  • Benavides MP, Gallego SM, Tomaro ML. 2005. Cadmium toxicity in plants. Brazilian Journal of Plant Physiology., 17: 21–34.
  • Bharti N, Barnawal D, Awasthi A, Yadav A, Kalra A. 2014. Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiologiae Plantarum., 36: 45–60.
  • Binet P, Portal JM, Leyval C. 2000. Fate of polycyclic aromatic hydrocarbons (PAH) in the rhizosphere and mycorrhizosphere of ryegrass. Plant Soil., 227: 207-213.
  • Cameotra SS, Bollag JM. 2003. Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons. Crit. Rev. Environ. Sci. Technology., 33: 111-126.
  • Chen B, Roos P, Zhu YG, Jakobsen I. 2008. Arbuscular mycorrhizas contribute to phytostabilization of uranium in uranium mining tailings. Journal of Environmental Radioactiv., 99: 801-810.
  • Chen BD, Zhu YG, Duan J, Xiao XY, Smith SE. 2007. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake of four plant species in copper mine tailings. Environmental Pollution., 147: 374-380.
  • Chen X, Wu C, Tang J, Hu S. 2005. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere., 60: 665-671.
  • Chibuike GU. 2013. Use of mycorrhiza in soil remediation: A review. Scientific Research and Essays., 8 (35): 1679-1687.
  • Daei G, Ardekani M, Rejali F, Teimuri S, Miransari M. 2009. Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. Journal of Plant Physiology, 166: 617–625.
  • Dixon RK, Buschena CA. 1988. Response of ectomychorrizal Pinus banksiana and Picea glauca to heavy metals in soil. Plant Soil., 105: 265-271.
  • Estrada B, Aroca R, Maathuis F. 2013. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant, Cell and Environment., 36: 1771-1782.
  • Gao Y, Li Q, Ling W, Zhu X. 2011. Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. J. Hazard. Material., 85: 703-709.
  • Gaur A, Adholeya A. 2004. Prospect of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science., 86: 528-534.
  • Ghosh M, Singh SP. 2005. A review on phytoremediation of heavy metals and utilization of its by-products Applied Ecological. Environmental Research., 3 (1): 1–8.
  • Giri B, Kapoor R, Mukerji KG. 2003. Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biology and Fertility of Soils., 38: 170–175.
  • Gohre V, Paszkowski U. 2006. Contribution of the Arbuscular Mycorrhizal Symbiosis to Heavy Metal Phytoremediation. Planta., 223: 1115-1122.
  • Gonzalez-Chavez M, Carrillo-Gonzalez R, Wright S, Nichols K. 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution., 130: 317–323.
  • Gür K. 1974. Studies on Distribution and Activities of Vesicular- Arbuscular Mycorrhiza (Master of Agriculture Science Thesis). Department of Soil Science, Universitiy of Reading, England.
  • Hajiboland R, Aliasgharzadeh N, Laiegh S, Poschenrieder C. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil., 331: 313–327.
  • Hammer EC, Rillig MC. 2011. The Influence of Different Stresses on Glomalin Levels in an Arbuscular Mycorrhizal Fungus-Salinity Increases Glomalin Content. PLoS ONE., 6 (12): e28426.
  • Hildebrandt U, Regvar M, Bothe H. 2007. Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry., 68: 139–146.
  • Huang Z, He C, He Z, Zou Z, Zhang Z. 2010. The effects of arbuscular mycorrhizal fungi on reactive oxyradical scavenging system of tomato under salt tolerance. Agricultural Sciences in China., 9: 1150–1159.
  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM. 2008. Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology., 55: 45–53.
  • Janouskova M, Pavlikova D, Vosatka M. 2006. Potential contribution of arbuscular mycorrhiza to cadmium immobilization in soil. Chemosphere., 65: 1959-1965.
  • Javaid, A. 2009. Arbuscular mycorrhizal mediated nutrition in plants. Journal of Plant Nutrition., 32: 1595–1618.
  • Joner E, Leyval C. 1997. Uptake of Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytologist., 135: 353–360.
  • Koide RT, Mosse B. 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza., 14: 145-163.
  • Mardukhi B, Rejali F, Daei G, Ardakani MR, Malakouti MJ, Miransari M. 2015. Mineral uptake of mycorrhizal wheat (Triticum aestivum L.) under salinity stress. Communications in Soil Science and Plant Analysis., 46: 343–357.
  • Marques APGC, Oliveira RS, Rangel AOSS, Castro PML. 2006. Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere., 65: 1256-1263.
  • Marschner H. 1998. Role of Root Growth, Arbuscular Mycorrhiza, and Root Exudates for The Efficiency in Nutrient Acquisition. Field Crops Research., 56: 203-207.
  • Meier S, Cornejo P, Cartes P, Borie F, Medina J, Azcón R. 2015. Interactive effect between Cu-adapted arbuscular mycorrhizal fungi and biotreated agrowaste residue to improve the nutritional status of Oenothera picensis growing in Cu-polluted soils. J. Plant Nutr. Soil Science., 178: 126–135.
  • Miransari M, Bahrami H, Rejali F, Malakouti M. 2008. Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biology and Biochemistry, 40: 1197–1206.
  • Miransari M. 2017. Arbuscular Mycorrhizal Fungi and Soil Salinity. Mycorrhizal Mediation of Soil: Fertility, Structure, and Carbon Storage. 263-277.
  • Orɫowska E, Godzik B, Turnau K. 2012. Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L. Environmental Pollution., 168: 121-130.
  • Ortaş İ. 2000. Mikorizanın Çevre Biliminde Kullanımı Ve Önemi. GAP-Çevre Kongresi, Şanlıurfa, Türkiye, 16-18 Ekim, s. 35-40.
  • Palta Ş, Demir S, Şengönül K, Kara Ö, Şensoy H. 2010. Arbüsküler Mikorizal Funguslar (AMF), Bitki ve Toprakla İlişkileri, Mera Islahındaki Önemleri. Bartın Orman Fakültesi Dergisi., 12 (18): 87-98.
  • Sajedi NA, Ardakani MR, Rejali F, Mohabbati F, Miransari M. 2010. Yield and yield components of hybrid corn (Zea mays L.) as affected by mycorrhizal symbiosis and zinc sulfate under drought stress. Physiology and Molecular Biology of Plants., 16: 343–51.
  • Sannazzaro AI, Echeverria M, Alberto EO, Ruiz OA, Menendez AB. 2007. Modulation of Polyamine Balance in Lotus Glaber by Salinity and Arbuscular Mycorrhiza. Plant Physiology and Biochemistry., 45: 39-46.
  • Sharifi M, Ghorbanli M, Ebrahimzadeh H. 2007. Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. Journal of Plant Physiology., 164: 1144–1151.
  • Sharma P, Dubey RS. 2005. Lead toxicity in plants. Brazilian Journal of Plant Physiology., 17 (1): 35–52.
  • Sheetal KR, Singh SD, Anand A, Prasad S. 2016. Heavy metal accumulation and effects on growth, biomass and physiological processes in mustard. Indian Journal of Plant Physiology., 21(2): 219–223.
  • Sheng M, Tang M, Chan H, Yang B, Zhang F, Huang Y. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza., 18: 287-296.
  • Shetty KG., Hetrick BAD., Schwab AP. 1995. Effect of mycorrhizae and fertilizer amendment on zinc tolerance of plants. Environmental Pollution., 88: 307–314.
  • Sieverding E. 1991. Vesicular-arbuscular mycorrhiza management in tropical agrosystems, Eschborn Press, Germany.
  • Singh S, Agrawal M. 2010. Effects of municipal waste water irrigation on availability of heavy metals and morphophysiological characteristics of Beta vulgaris L. Journal of Environmental Biology., 31: 727–736.
  • Smith S, Read DJ. 2008. Mycorrhizal Symbiosis, Third Edition (Hardcover). Academic Press, New York, 800 p.
  • Smith SE, Facelli E, Pope S, Smith F. 2010. Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil., 326: 3-20.
  • Tonin C, Vandenkoorhuyse P, Jonere J, Straczekj C, Leyval C. 2001. Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and the effect of these fungi on heavy metal uptake by clover. Mycorrhiza., 10: 161-168.
  • Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G. 2006. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere., 65: 74-81.
  • Turnau K. 1998. Heavy metal content and localization in mycorrhizal Euphorbia cyparissias from zinc wastes in southern Poland. Acta Societatis Botanicorum Poloniae., 67(1): 105-113.
  • Wang JY, Huang XJ, Kao JCM, Stabnikova O. 2007. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process. J. Hazard. Material., 144: 292-299.
  • Weissenhorn I, Leyval C, Belgy G, Berthelin J. 1995. Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza., 5 (4): 245-251.
  • Xiao X, Chen H, Si C, Wu L. 2012. Influence of biosurfactantproducing strain Bacillus subtilis BS 1 on the mycoremediation of soils contaminated with phenanthrene. Int. Biodeter. Biodegrad., 75: 36-42.
  • Zuccarini P, Okurowska P. 2008. Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. Journal of Plant Nutrition., 31: 497–513.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Kapıaçmaz Göleti (Kovancılar, Elazığ) Zooplankton’unun Mevsimsel Değişimi

HİLAL BULUT

Comparison of The Effects of Dietary Supplementation of Natural Antimicrobial Feed Additives on Lipid Oxidation, Microbial Content and Quality of Broiler Raw Meat

ŞENAY SARICA, Durşen ÜRKMEZ

Determination of Multiple Antioxidant Activities of Endemic Tricholoma anatolicum H.H Doğan & Intini Collected from Turkey

HATIRA TAŞKIN, TÜLİN EKER, FUAT BOZOK, HASAN HÜSEYİN DOĞAN, Saadet BÜYÜKALACA

Evaluation of Lentil Genotypes (Lens culinaris Medikus) for Growth and Yield Performances across Climate Conditions of Central Highlands of Ethiopia

Eba Muluneh SORECHA, Nano Alemu DABA

Türkiye’den Toplanan Endemik Tricholoma anatolicum’un Çoklu Antioksidant Aktivitesinin Belirlenmesi

Hasan Hüseyin DOĞAN, Hatıra TAŞKIN, Saadet BÜYÜKALACA, Tülin EKER, Fuat BOZOK

Tüketicilerin Ekmek Tüketim Alışkanlıkları ve İsraf Durumu: Hatay/Türkiye Örneği

Aybüke KAYA, Erdal DAĞISTAN, Bekir DEMİRTAŞ

The Effects of Age and Number of Grafted Larvae on Some Physical Characteristics of Queen Bees and Acceptance Rate of Queen Bee Cell

Samet OKUYAN, ETHEM AKYOL

Akut REM Uyku Yoksunluğu Oluşturulan Sıçanlarda Uzun dönem Ilımlı Egzersizin Depresif/Anksiyete Benzeri Davranış Üzerine Etkisi

LEYLA ŞAHİN

The Nexus between Livestock Products and Government Supports: A Time Series Examination on Turkey

Mehmet Okan TAŞAR, Ali KARABACAK, Savaş ÇEVİK

Hayvansal Ürün Üretimi ve Devlet Destekleri Arasındaki İlişki: Türkiye Üzerine Zaman Serisi İncelemesi

SAVAŞ ÇEVİK, ALİ KARABACAK, MEHMET OKAN TAŞAR