Halopridolün Sıçanlarda Çevresel Uyaranlar Tarafından Kontrol Edilen Pedala Basma Davranışı Üzerindeki Etkileri

Bu araştırmada bir dopamin (DA) D2 reseptör antagonisti olan haloperidolün (0.00, 0.08, 0.16 ve 0.32 mg/kg, ip) sıçanların gerçekleştirdikleri, su ile pekiştirilen pedala basma davranışı üzerindeki etkilerinin, davranışın pekiştirilip pekiştirilmediğine, davranışın deneyci tarafından değişimlenen ses ve ışık gibi çevresel uyaranlarca kontrol edilip edilmediğine ve uyaran türüne bağlı olarak farklılaşıp farklılaşmadığı incelenmiştir. Araştırmada kontrol (n~6), ışık (n= 8) ve ses (n = 7) grupları olmak üzere üç gruba ayrılan 21 adet erkek, albino Wistar sıçan denek olarak kullanılmıştır. Deneklere pekiştireç elde etmek için pedala basmaları öğretildikten sonra, deney gruplarının pedala basma davranışları ses veya ışık uyaranının kontrolü altına sokulmuş ve daha sonra her deneysel oturum için, ilaç etkisi altındaki deneklerin pedala basma davranışlarının pekiştirildiği (S+ koşulu) ve pekiştirilmediği (S- koşulu) koşullarda davranış ölçümleri alınmıştır. Her deneğin her bir deney oturumundaki performansını temsil eden ortalama S+ ve S- koşulu pedala basma sayısı değerleri ve her bir denek ve ilaç miktarı için S+ koşulunda yapılan davranış sayısının aynı denek tarafından aynı ilaç miktarı etkisi altında gerçekleştirilen toplam davranış sayısına bölünmesiyle elde edilen oran değerleri tekrat ölçümlü ANOVA ve eğilim analizleri kullanılarak analiz edilmiştir. Araştırmanın bulguları, DA D2 reseptörlerinin bloklanmasının deneklerin pedala basma davranışlarının sayısında azalmaya yol açmakla birlikte, davranışın çevresel uyaranlarca kontrolünü etkilemediğini göstermiştir.
Anahtar Kelimeler:

haloperidol, dopamin

Effects of Haloperidol on Cue Controlled Lever Pressing Behavior in the Rat

The current study examined whether the presence and absence of discrete environmental stimuli controlling water reinforced lever-pressing response could change the well known behavior attenuating effects of dopamine D2 receptor antagonist haloperidol (0.00, 0.08, 0.16 and 0.32 mg/kg, ip). 21 rats were trained to bar press to obtain water, and then, divided into three groups. One of the groups was the control group. Remaining two groups of rats were trained to bar press to Obtain water in the presence of either an auditory (sound group) or a visual cue (light group). The number of lever-pressing responses for the subjects were recorded in the presence (S+) and absence (S-) of environmental stimuli and reinforcer. Haloperidol suppressed the mean number of responses for all groups, regardless of stimulus conditions. However, the index of persistence obtained for each subject by dividing the number of responses emitted during the presence of respective envirohmental cue to the number of total responses executed by the same subject under the same conditions, remained the same after haloperidol pretreatment. The results showed that although haloperidol attenuated the number of operant lever-pressing responses, the conditioned motivational properties of environmental cues are unaltered by treatment with the same D2 receptor antagonist.
Keywords:

haloperidol, dopamine,

___

  • Acquas, E., Carboni, E., Leone, P., & Di Chiara. G. (1989). SCH 23390 blocks drug-conditioned place-preference and place-aversion: anhedonia (lack of reward) or apahty (lack of motivation) after dopamine-receptor blockade? Psychopharmacology (Berl), 99 (2), 151-155.
  • Ahlenius, S. (1979). An analysis of behavioural effects produced by drug-induced changes of dopaminergic neurotransmission in the brain. Scandinavian Journal of Psychology, 20 (1), 59-64.
  • Bassareo. V., & Di Chiara, G. (1999). Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational slate. European Journal of Neuroscience, 11 (12), 4389-4397.
  • Beninger, R. J., & Hahn, B. L. (1983). Pimozide blocks establishment but not expression of amphetamine-produced environment-specific conditioning. Science, 220. 1304-1306.
  • Beninger, R. J., & Herz, R. S. (1986). Pimozide blocks establishment but not expression of cocaine-produced environment-specific conditioning. Life Sciences, 38 (15), 1425-1431.
  • Berridge, K. C. (2003). Pleasures of the brain. Brain and Cognition, 52, 106-128.
  • Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology & Behavior, 81, 179-209.
  • Berridge, K. C, & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309-369.
  • Blackburn, J. R., Phillips, A. G., & Fibiger, H. C. (1987). Dopamine and preparatory behavior: I. effects of pimozide. Behavioral Neuroscience, 101 (3), 352-360.
  • Bozarth, M. A. (1990). Drug addiction as a psychobiological process. D. M. Warburlon (Ed.). Addiction Controversies. London, Harwood Academic Publishers, 112-134. http://www.addictionscience.net/ ARUreport04.html
  • Bozarth, M. A. (1991). The mesolimbic dopamine system as a model reward system. P. Willner, & J. Scheel-Kriiger (Eds.). The Mesolimbic Dopuwine System: From Motivation To Action. London, John Wiley and Sons, 301-330. http://wings.buftalo.edu/aru/ MALTA.html
  • Bozarth, M. A. (1994). Pleasure systems in the brain. D. M. Warburton (Ed.). Pleasure: The Politics And The Reality. NewYork, John Wiley and Sons. 5-14. http://wings.buffalo.edu/aru/ARUreport01.htm
  • Bozarth, M. A.. & Wise, R. A. (1981). Heroin reward is dependent on a dopaminergic substrate. Lite Sciences, 29 (IX), 1881-1886.
  • Cador, M, Robbins, T. W., Everitt, B. J., Simon, H., Le Moal, M.. & Stinus, L. (1991). Limbic-Striatal Interactions in Reward-Related Processes: Modulation by the Dopaminergic System. P. Willner & J. Scheel-Kriiger (Eds.). The Mesolimbic Dopamine System: From Motivation to Action. John Wiley & Sons Ltd., 225-250.
  • Carlton, P. L., & Manowitz, P. (1984). Dopamine and schizophrenia: An analysis of the theory. Neuroscience and Biobehavioral Reviews, 8, 137-151.
  • Clody, D. E., & Carlton, P. L. (1980). Stimulus efficacy, chlorpromazine and schizophrenia. Psychopbarmacology, 69, 127-131.
  • Coenders, C. J. H., Kerbusch, S. M. L., & Vossen, J. M. H. (1993). Haloperidol affects stimulus-dependent strategies and not reward-dependent strategies. Brain Research Bulletin, 32, 7-10.
  • Cohen, J. D., & Servan-Schreiber, D. (1992), Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychological Review, 99(1), 45-77.
  • Crombag, H. S., Grimm, J. W., & Shaham, Y. (2002). Effect of dopamine receptor antagonists on renewal of cocaine seeking by reexposure to drug-associated contextual cues. Neuropsychopharmacology, 27 (6), 1006-1015.
  • Datla, K. P., Ahier, R. G., Young, A. M., Gray, J. A., & Joseph, M. H. (2002). Conditioned appetitive stimulus increases extracelluler dopamine in the nucleus accumbens of the rat. European Journal of Neurpscience, 16(10), 1987-1993.
  • Deadwyler, S. A., Hayashizaki, S., Cheer, J., & Hampson, R. E. (2004). Reward, memory and substance abuse: functional neuronal circuits in the nucleus accumbens. Neuroscience and Biobehavioral Reviews, 27 (8), 703-711.
  • Eltenberg, A., Cinsavich, S. A., & White, N. (1979). Performance effects with repeated- response measures during pimozide-produced dopamine receptor blockade. Pharmacology, Biochemistry and Behavior, 11 (5), 557-561.
  • Ettenberg, A., Koob, G. F., & Bloom, F. E. (1981). Response artifact in the measurement of neuroleptic-induced anhedonia. Science, 213. 357-359.
  • Ettenberg, A., & McFarland, K. (2003). Effects of haloperidol on cue-induced autonomic and behavioral indices of heroin reward and motivation. Psychopharmiicology, 168, 139-145.
  • Fouriezos, G., & Wise, R. A. (1976). Pimozide-induced extinction of intracranial self-stimulation: response patterns rule out motor or performance deficits. Brain Research. 103 (2), 377-380.
  • Fowler, S. C. (1990). Neuroleptics produce within-session response decrements: facts and theories. Drug Development Research, 20, 101-116.
  • Fowler, S. C, & Kirkpatrick, M. A. (1989). Behavior-decrementing effects of low doses of haloperidol result from distruptions in response force and duration. Behavioral Pharmacology, 1 (2), 123-132.
  • Fowler. S. C, & Senyuz, L. (1993). Effects of haloperidol on a run-climb-run behavioral task: Distance climbed does not alter within-session decrements. Behavioral Neuroscience, 107 (4), 651-661.
  • Franken, I. H. A. (2003). Drug craving and addiction: integrating psychological and neuropsychopharmacological approaches. Progress in Neuropsychopharmacology and Biological Psychiatry, 27, 563-579.
  • Franklin, K. B. J., & McCoy, S. N. (1979). Pimozide-induced extinction in rats: stimulus control of responding rules out motor deficit. Pharmacology, Biochemistry and Behavior, 11,71-75.
  • Gerber, G. J., Sing, J., & Wise, R. A. (1981). Pimozide attenuates lever pressing for water reinforcement in rats. Pharmacology, Biochemistry and Behavior, 14, 201-205.
  • Grace, A. A. (2002). Dopamine. K. L. Davis, D. Charney, J. T. Coyle, & C. Nemeroff(Eds.). Neuropsychopharmacology: The Fifth Generation of Progress. Philadelphia, Lippincott Williams and Wilkins, 119-132.
  • Gramling, S. E., & Fowler, S. C. (1985). Effects of neuroleptics on rate and duration of operant versus reflexive licking in rats. Pharmacology, Biochemistry and Behavior, 22 (4), 541-545.
  • Hammond, E. O., Torok, M. L., & Ettenberg, A. (1991). Different patterns of behavior produced by haloperidol, pentobarbital, and dantrolene in tests of unconditioned locomotion and operant responding. Psychopharmacology (Beri), 104(2), 150-156.
  • Hooks, M. S. & Kalivas, P. W. (1995). The role of mesoaccumbens-pallidal circuitry in novelty-induced behavioral activation. Neuroscience, 64 (3), 587-597.
  • Horvitz, J. C. (2002)1 Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behavioral Brain Research, 137 (1-2), 65-74.
  • Horvitz, J. C, & Ettenberg, A. (1989). Haloperidol "blocks the response-reinstating effects of food reward: a methodology for separating neuroleptic effects on reinforcement and motor processes. Pharmacology, Biochemistry and Behavior, 31, 861 -865.
  • Horvitz, J. C, & Ettenberg, A. (1991). Conditioned incentive properties of a food-paired conditioned stimulus remain intact during dopamine receptor blockade. Behavioral Neuroscience, 105 (4), 536-541.
  • Horvitz, J. C, & Eyny, Y. S. (2000). Dopamine D, receptor blockade reduces response likelihood but does not affect latency to emit a learned sensory-motor response: implications for parkinson's disease. Behavioral Neuroscience, 114 (5), 934-939.
  • Kebabian, J. W., & Calne, D. B. (1979). Multiple receptors for dopamine. Nature, 277, 93-96.
  • Kelley, A. E. (2004). Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neuroscience and Biobehavioral Reviews, 27, 765-776.
  • Kritikos, A., Leahy, C, Bradshaw, J. L., Iansek, R., Phillips, J. G., & Bradshaw, J. A. (1995). Contingent and non-contingent auditory cueing in parkinson's disease. Neuropsychologia, 33 (10), 1193-1203.
  • Levin, E. D. (1988). Scopolamine interactions with D, and D2 antagonists on radial-arm maze performance in rats. Behavioral and Neural Biology, 50, 240-245.
  • Liao, R. M., & Fowler, S. C. (1990). Haloperidol produced within-session increments in operant response duration in rats. Pharmacology, Biochemistry and Behavior, 36 (1), 191-201.
  • Ljunberg, T. (1987). Blockade by neuroleptics of water intake and operant responding for water in the rat: anhedonia, motor deficit, or both? Pharmacology, Biochemistry and Behavior, 27, 341-350.
  • Lynch, M. R., & Carey, R. J. (1987). Environmental stimulation promotes recovery from haloperidol-induced extinction of open field behavior in rats. Psychoplmrmacology (Berl), 92 (2), 206-209.
  • Mason, S. T., Beninger, R. J., Fibiger, H. C, & Phillips, A. G. (1980). Pimozide-induced suppression of responding: evidence against a block food reward. Pharmacology, Biochemistry and Behavior, 12. 917-923.
  • McFarland, K., & Ettenberg, A. (1997). Reinstatement of drug-seeking behavior produced by heroin-predictive environmental stimuli. Psychopharmacology, 131, 86-92.
  • McFarland, K., & Ettenberg, A. (1998). Haloperidol does not affect motivational processes in an operant runway model of food-seeking behavior. Behavioral Neuroscience, 112 (3), 630-635.
  • McFarland, K., & Ettenberg, A. (1999). Haloperidol does not attenuate conditioned place preferences or locomotor activation produced by food-or heroin-predictive discriminative cues. Pharmacology Biochemistry and Behavior, 62 (4), 631-641.
  • Milgram, B. (2004). Neurobiology of Reward, http://www.utsc. utoronto.ca/~milgram/nroc61/reward.doc
  • Nakajima, S. (1986). Suppression of operant responding in the rat by dopamine D, receptor blockade with SCH23390. Physiological Psychology, 14(3-4), 111-114.
  • Phillips P. E., Stuber G. D., Heien M. L., Wightman R. M., Carelli R. M. (2003). Subsecond dopamine release promotes cocaine seeking. Nature, 422 (6932), 614-618.
  • Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research Reviews, 18 (3), 247-291.
  • Rolls, E. T., Rolls, B. J., Kelly, P. H., Shaw, S. G., Wood, R. J., & Dale, R. (1974). The relative attenuation of self-stimulation, eating and drinking produced by dopamine-receptor blockade. Psychopharmacologia (Berl.), 38, 219-230.
  • Ross, R. T., & LoLordo, V. M. (1987). Evaluation of the relation between Pavlovian occasion-setting and instrumental discriminative stimuli: A blocking analysis. Journal of Experimental Psychology: Animal Behavior Processes, 13 (1), 3-16.
  • Salamone, J. D. (1991). Behavioral pharmacology of dopamine systems: A new synthesis. P. Willner and J. Scheel-Krüger (Eds.). The Mesolimbk Dopamine System: From Motivation to Action. New York, John Wiley and Sons. Ltd., 599-623.
  • Salamone, J. D. (1992). Complex motor and sensorimotor functions of striatal and accumbens dopamine: involvement in instrumental behavior processes. Psychopharmacology, 107, 160-174.
  • Salamone, J. D., & Correa, M. (2002). Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behavioural Brain Research, 137, 3-25.
  • Salamone, J. D., Cousins, M. S., Maio, C, Champion, M., Turski, T., & Kovach, J. (1996). Different behavioral effects of haloperidol, clozapine and thioridazine in a concurrent lever pressing and feeding procedure. Psychopharmacology (Bert), 125 (2), 105-112.
  • Salamone, J. D., Cousins, M. S., & Snyder, B. J. (1997). Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neuroscience and Biobehavioral Reviews, 21 (3), 341-359.
  • Salamone, J. D., Steinpreis, R. E., McCullough, L. D., Smith, P., Grebel, D., & Mahan, K. (1991). Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology (Bed), 104(4), 515-521.
  • Sanger, D. J., & Perrault, G. (1995). Effects of typical and atypical antipsychotic drugs on response decrement patterns in rats. The Journal of Pharmacology and Experimental Therapeutics Fast Forward, 272 (2), 708-713.
  • Schultz, W., Dayan, P., & Montague, R. (1997). A neural substrate of.prediction and reward. Science, 275, 1593-1599. Sokolowski. i. D., & Salamone, J. D. (1998). The role of accumbens dopamine in lever pressing and response allocation: Effects of 6-OHDA injected into core and dorsomedial shell. Pharmacology, Biochemistry and Behavior, 59 (3), 557-566.
  • Stanford, J. A., & Fowler, S. C. (1997). Subchronic effects of clozapine and haloperidol on rats' forelimb force and duration during a press-while-licking task. Psychophurmacology (Berl), 130 (3), 249-253.
  • Toates, F. M. (2001). Biological Psychology: An Integrative Approach. Pearson Education Harlow, England.
  • Trevitt, J., Atherton, A., Aberman, J., & Salamone, J. D. (1998). Effects of subchronic administration of clozapine, thioridazine and haloperidol on tests related to extrapyramidal motor function in the rat. Psychopharmacology, 137, 61-66.
  • Wade, T. R., De Wit, H., & Richards, J. B. (2000). Effects of dopaminergic drugs on delayed reward as a measure of impulsive behavior in rats. Psychopharmacology (Beri), 150(1), 90-101.
  • White, N. M., & Milner, P. M. (1992). The psychobiology of reinforcers. Annual Review of Psychology, 43, 443-471.
  • Wirtshafter, D. & Asin. K. E. (1985). Haloperidol and nonreinforcement produce different patterns of response slowing in a food reinforced runway task. Pharmacology, Biochemistry and Behavior, 22, 661-663.
  • Wise, R. A. (1982). Neuroleptics and operant behavior: The anhedonia hypothesis. Behavioral and Brain Sciences, 5(1). 39-87.
  • Wise, R. A., & Bozarth, M. A. (1987). A psychomotor stimulant theory of addiction. Psychological Review, 94 (4), 469-492.
  • Wise, R. A., & Rompre, P. P. (1989). Brain dopamine and reward. Annual Review of Psychology, 40, 191-225.
  • Woolverton, W. L., & Virus, R. M. (1989). The effects of a D, and D2 dopamine antagonist on behavior maintained by cocaine or food. Pharmacology, Biochemistry and Behavior, 32, 691-697.