Sıçanlarda epilepsi modelinde vagus sinirinde norepinefrin taşıyıcılarının immünohistokimyası

Amaç: Epileptik nöbetler elektriksel aktivitenin aşırı ve kontrolsüz şekilde yayılmasının bir sonucu olarak ortaya çıkmaktadır. Yapılan çalışmalar epileptik nöbetlerin otonomik işlevi etkileyebileceğini bildirmiştir. Ancak moleküler mekanizma henüz tam olarak aydınlatılamamıştır. Vagus siniri (VS) tüm parasempatik sistem liflerinin %75’ini taşıdığından dolayı epilepsi patogeneziyle ilişkili otonomik merkezde büyük bir öneme sahiptir. Afferent duyusal lifleri beyin sapındaki ilişkili bölgelerdeki bağlantılar aracılığıyla sinapslar arası norepinefrin (NE) iletimini sağlamaktadır. Böylece, NE’nin nöbetler üzerinde baskılayıcı etkisi ve NE taşıyıcılarının (NET) nörotransmitter geri alımındaki görevi oluşabilir. Otonom sinir sisteminde görev alan nörotransmiterler ve ilgili taşıyıcıların moleküler düzeyde incelenmesi ilişkili mekanizmanın anlaşılmasına yardımcı olabilir. Bu çalışmada pentilentetrazol (PTZ) epilepsi modelinde NET ile ilişkili immünoreaktivitenin belirlenmesi amaçlanmıştır. Yöntem: Epileptik nöbetler Wistar sıçanlarında (280-380g) 28 gün boyunca PTZ [ilk 12 enjeksiyon 35 mg/ kg, intraperitoneal (I.P.) ve son enjeksiyon 50 mg/kg I.P.] uygulanarak indüklendi. Daha sonra VS torakal ve servikal kesitler açısından iki parça halinde diseke edildi. NET seviyeleri doku örnekleri üzerinde immünohistokimyasal boyama ile değerlendirildi. Bulgular: Erkek ve dişi deney gruplarının torakal vagus bölgesinde NET ifadesinin anlamlı olarak arttı. Servikal VS’de NET ekspresyonu epileptik erkek sıçanlarda önemli ölçüde artarken, epileptik dişi sıçanlarda kontrol gruplarına göre azaldı. Sonuç: Çalışmamız VS’de NET ifadesinin anlamlı bölgesel artışlarını ortaya koymuştur. NE regülasyonunda rol alan NET’in parasempatik sinirsel uyarım bozukluğu ile karakterize olabildiği düşünülmektedir. Gözlemlenen NET ifadesindeki değişiklikler epilepsi ile ilişkili otonom sinir sistemi işlev bozukluklarını etkileyebileceğine dair kanıtlar sunabilir.

Immunohistochemistry of norepinephrine transporters in the vagus nerve in a rat model of epilepsy

Objective: Epileptic seizures occur as a result of the excessive and uncontrolled spread of electrical activity. Studies have reported that epileptic seizures may affect the autonomic function. However, the main molecular mechanism has not been elucidated yet. Since the vagus nerve (VN) carries 75% of all parasympathetic autonomic system fibers, it is of great importance in the autonomic center associated with epilepsy pathogenesis. Afferent sensory fibers of the VN have connections to associated regions in the brainstem, providing norepinephrine (NE) transmission. Therefore, the suppressive effect of NE on seizures and the role of NE transporters (NET) in neurotransmitter reuptake may occur. Examining the neurotransmitters and related transporters in the autonomic nervous system at the molecular level may help to understand the related mechanism. In this study, we aimed to determine the NET-associated immunoreactivity in the VN in pentylenetetrazole (PTZ) epilepsy model. Methods: Epileptic seizures were induced in Wistar rats (280-380g) by administering PTZ [first 12 injections 35 mg/kg, intraperitoneal (I.P.) and last injection 50 mg/kg I.P.] for 28 days. Subsequently, the VN was dissected as two parts, in terms of the thoracic and cervical sections. The NET levels were evaluated by immunohistochemical staining on the tissue samples. Results: Expression of NETs in the thoracic VN region of the male and female experimental groups significantly increased. In the cervical VN, NET expression was significantly increased in epileptic male rats, while decreased in epileptic female rats compare to control groups. Conclusion: Our study may disclose significant regional enhancement in the NET immunoreactivity. It is assumed that NET, which plays a role in NE regulation, may be characterized by abnormal neural stimulation. The findings provide proof-of-concept that alterations in NET expression may affect the ANS dysfunctions associated with epilepsy.

___

  • 1. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia, 2014;55: 475-82.
  • 2. Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet, 2019;393: 689-701.
  • 3. Devinsky O, Ryvlin P, Friedman D. Preventing Sudden Unexpected Death in Epilepsy. JAMA Neurol, 2018;75: 531-2.
  • 4. Goldenholz DM, Kuhn A, Austermuehle A, Bachler M, Mayer C, Wassertheurer S et al. Long-term monitoring of cardiorespiratory patterns in drugresistant epilepsy. Epilepsia, 2017;58: 77-84.
  • 5. Van der Lende M, Surges R, Sander JW, Thijs RD. Cardiac arrhythmias during or after epileptic seizures. J Neurol Neurosurg Psychiatry, 2016;87: 69-74.
  • 6. Wehrwein EA, Orer HS, Barman SM. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr Physiol, 2016;6: 1239-78.
  • 7. Tindle J, Tadi P. Neuroanatomy, Parasympathetic Nervous System. StatPearls, StatPearls Publishing LLC, 2020.
  • 8. English BA, Jones CK. Chapter 14 - Cholinergic Neurotransmission. Primer on the Autonomic Nervous System (Third Edition). San Diego: Academic Press, 2012.
  • 9. Thompson N, Mastitskaya S, Holder D. Avoiding off-target effects in electrical stimulation of the cervical vagus nerve: Neuroanatomical tracing techniques to study fascicular anatomy of the vagus nerve. J Neurosci Methods, 2019;325: 108325.
  • 10. Barot N, Nei M. Autonomic aspects of sudden unexpected death in epilepsy (SUDEP). Clin Auton Res, 2019;29: 151-60.
  • 11. Hulsey DR, Shedd CM, Sarker SF, Kilgard MP, Hays SA. Norepinephrine and serotonin are required for vagus nerve stimulation directed cortical plasticity. Exp Neurol, 2019;320: 112975.
  • 12. Bouret S. Locus Coeruleus, Noradrenaline, and Behavior: Network Effect, Network Effects? Neuron, 2019;103: 554-6.
  • 13. Schwarz LA, Luo L. Organization of the locus coeruleus-norepinephrine system. Curr Biol, 2015;25: R1051-r1056.
  • 14. Kumar U, Medel-Matus JS, Redwine HM, Shin D, Hensler JG, Sankar R et al. Effects of selective serotonin and norepinephrine reuptake inhibitors on depressive- and impulsive-like behaviors and on monoamine transmission in experimental temporal lobe epilepsy. Epilepsia, 2016;57: 506-15.
  • 15. Tellioglu T, Robertson D. Genetic or acquired deficits in the norepinephrine transporter: current understanding of clinical implications. Expert Rev Mol Med, 2001;2001: 1-10.
  • 16. Wayment HK, Schenk JO, Sorg BA. Characterization of extracellular dopamine clearance in the medial prefrontal cortex: role of monoamine uptake and monoamine oxidase inhibition. J Neurosci, 2001;21: 35-44.
  • 17. Löscher W. Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochem Res, 2017;42: 1873- 88.
  • 18. Racine RJ. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol, 1972;32: 281-94.
  • 19. Midzyanovskaya I, Shatskova A, MacDonald E, Van Luijtelaar G, Tuomisto L. Brain aminergic deficiency in absence epileptic rats: Dependency on seizure severity and their functional coupling at rest. J Behav Brain Sci, 2020;10: 29-45.
  • 20. Stevens L, Vonck K, Van Lysebettens W, Baekelandt V, Van Den Haute C, Carrette E et al. Genetic modification of Locus Coeruleus NE cells for chemogenetic activation remains challenging. Front Neurosci Conference, 2019.
  • 21. Hui Yin Y, Ahmad N, Makmor-Bakry M. Pathogenesis of epilepsy: challenges in animal models. Iran J Basic Med Sci, 2013;16: 1119-32.
  • 22. Deal AL, Mikhailova MA, Grinevich VP, Weiner JL, Gainetdinov RR, Budygin EA. In vivo voltammetric evidence that locus coeruleus activation predominantly releases norepinephrine in the infralimbic cortex: Effect of acute ethanol. Synapse, 2019;73: e22080.
  • 23. Stevens L, Vonck K, Larsen LE, Van Lysebettens W, Germonpré C, Baekelandt V et al. A Feasibility Study to Investigate Chemogenetic Modulation of the Locus Coeruleus by Means of Single Unit Activity. Front Neurosci, 2020;14: 162
  • 24. Giorgi FS, Ferrucci M, Lazzeri G, Pizzanelli C, Lenzi P, Alessandrl MG et al. A damage to locus coeruleus neurons converts sporadic seizures into selfsustaining limbic status epilepticus. Eur J Neurosci, 2003;17: 2593-601.
  • 25. Jaiswal MK, Zech WD, Goos M, Leutbecher C, Ferri A, Zippelius A et al. Impairment of mitochondrial calcium handling in a mtSOD1 cell culture model of motoneuron disease. BMC Neurosci, 2009;10: 64.
  • 26. Chinda K, Tsai WC, Chan YH, Lin AY, Patel J, Zhao Y et al. Intermittent left cervical vagal nerve stimulation damages the stellate ganglia and reduces the ventricular rate during sustained atrial fibrillation in ambulatory dogs. Heart Rhythm, 2016;13: 771-80.
  • 27. Planitzer U, Hammer N, Bechmann I, Glätzner J, Löffler S, Möbius R et al. Positional Relations of the Cervical Vagus Nerve Revisited. Neuromodulation, 2017;20: 361-8.
  • 28. Onkka P, Maskoun W, Rhee KS, Hellyer J, Patel J, Tan J et al. Sympathetic nerve fibers and ganglia in canine cervical vagus nerves: localization and quantitation. Heart Rhythm, 2013;10: 585-91.
  • 29. Seki A, Green HR, Lee TD, Hong L, Tan J, Vinters HV et al. Sympathetic nerve fibers in human cervical and thoracic vagus nerves. Heart Rhythm, 2014;11: 1411-7.
  • 30. Rhee KS, Hsueh CH, Hellyer JA, Park HW, Lee YS, Garlie J et al. Cervical vagal nerve stimulation activates the stellate ganglion in ambulatory dogs. Korean Circ J, 2015;45: 149-57.
  • 31. Wotton CA, Cross CD, Bekar LK. Serotonin, norepinephrine, and acetylcholine differentially affect astrocytic potassium clearance to modulate somatosensory signaling in male mice. J Neurosci Res, 2020;98: 964-77.
  • 32. Akyüz E, Doğanyiğit Z, Paudel YN, Kaymak E, Yilmaz S, Uner A et al. Increased ACh-Associated Immunoreactivity in Autonomic Centers in PTZ Kindling Model of Epilepsy. Biomedicines, 2020;8.
  • 33. Berg T. Kv7(KCNQ)-K(+)-Channels Influence Total Peripheral Resistance in Female but Not Male Rats, and Hamper Catecholamine Release in Hypertensive Rats of Both Sexes. Front Physiol, 2018;9: 117.
  • 34. Akyüz E, Mega Tiber P, Beker M, Akbaş F. Expression of cardiac inwardly rectifying potassium channels in pentylenetetrazole kindling model of epilepsy in rats. Cell Mol Biol, (Noisy-le-grand) 2018;64: 47-54.
  • 35. Akyuz E, Polat K, Ates S, Unalmis D, Tokpinar A, Yilmaz S et al. Investigating Cardiac Morphological Alterations in a Pentylenetetrazol-Kindling Model of Epilepsy. Diagnostics, 2020;10: 388.
Türk Hijyen ve Deneysel Biyoloji Dergisi-Cover
  • ISSN: 0377-9777
  • Başlangıç: 1938
  • Yayıncı: Türkiye Halk Sağlığı Kurumu