The possible role of Kallikrein-6, 7, and potassium channel proteins in Alzheimer’s disease

Objective: Although the formation mechanism of Alzheimer’s Disease (AD) is not known with certainty, two major proteins, beta amyloid of senile plaques and tau protein of neurofibrillary tangels are responsible for AD. One of the major factors in the development of the disease is the formation of in soluble amyloid deposits, and the other one is the increased tau phosphorylation. Kallikreins (KLK’s) are a sub-family of serine proteases that play a role in the etiology of AD which is characterized by neuronal damage and loss of function.Kallikrein (KLK)-6 and KLK-7 are known to be age-related protease and are found at high levels in the central nervous system (CNS). It was previously shown to be involved in proteolysis of extracellular proteins implicated in neurodegenerative diseases such as AD. In this study, we aimed to investigate the possible role of KLK-6 and KLK-7 in the pathogenesis of AD and the relationship between potassium channel proteins. Methods: A total of 35 Alzheimer’s patients over the age 65 years, followed-up by Polatlı Duatepe Government Hospital and 35 healthy individuals (control group) admitted to the neurology clinic for routine screening with cognitive status considered normal were included in this study. After a 12-hour hunger, KLK-6 and KLK-7 were measured with inwardly rectifying potassium channel protein (KCNJ3), and two-pore potassium channel protein (KCNK9) levels were measured by the Enzyme-Linked Immuno Sorbent Assay (ELISA) in the serum of the blood samples which were taken from the antecubital vein after centrifuging for 10 minutes at 2500xg. The differences between the two groups were tested by T- test. A value of p0.05). According to our findings, serum KLK- 6 and KLK-7 levels of Alzheimer’s group were significantly increased (p0.05). Conclusion: It is thought that the failure in preventing the abnormal protein folding and accumulation leads to AD in the brain. According to the findings of the present study, a positive correlation was detected between the levels of KLK-6 and KLK-7 and AD’s pathology.

Alzheimer hastalığında Kallikrein-6, 7 ve potasyum kanal proteinlerinin olası rolü

Amaç: Alzheimer hastalığının (AH) oluşum mekanizması kesin olarak bilinmemekle birlikte AH’dan sorumlu başlıca iki protein, senile plakların yapısındaki beta amiloid ve nörofibriler yumakların yapısındaki tau proteinidir. Hastalığa yol açan en önemli etmenlerden biri çözünür olmayan amiloid çökeltilerin oluşumu, diğeri ise artmış tau fosforillenmesidir. Kallikreinler, nöronal hasar ve işlev kaybı ile belirgin AH’nın etiyolojisinde rol oynayan, serin proteazların bir alt familyasıdır. Kallikrein (KLK)-6 ve KLK-7’nin merkezi sinir sisteminde (MSS) yüksek seviyelerde bulunan yaşa bağlı proteaz olduğu bilinmektedir. Daha once AH’ı gibi nörodejeneratif hastalıklarda yer alan hücre dışı proteinlerin proteolizine karıştığı gösterilmiştir. Bu çalışmada KLK-6 ve KLK-7’nin AH patogenezindeki olası rolünü ve potasyum kanal proteinleri arasındaki ilişkiyi araştırmayı amaçladık. Yöntem: Çalışmaya Polatlı Duatepe Devlet Hastanesinde takip edilen yaşları 65’in üzerinde olan 35 AH ve rutin tarama amacıyla nöroloji polikliniğine başvuran kognitif durumu normal olarak değerlendirilen 35 sağlıklı birey (control grubu) dahil edildi. 12 saat açlığı takiben antekübital venden alınan kan örnekleri 4°C’de 2500xg’de 10 dakika santrifüj edilerek, serum örneklerinde KLK-6 ve KLK-7 ile içeri doğru düzeltici potasyum kanalı (KCNJ3) ve iki gözenekli potasyum kanalı (KCNK9) protein düzeyleri enzim-bağımlı immunosorbent assay (ELISA) ile ölçüldü. Gruplar arasındaki fark T-test ile incelendi. p0.05). Alzheimer grubu control grubu ile karşılaştırıldığında serum KLK-6 ve KLK-7 düzeyleri anlamlı olarak artarken (p0.05). Sonuç: Beyinde anormal protein katlanmasının ve birikmesinin önüne geçilememesinin AH’ye yol açtığı düşünülmektedir. Bu araştırmanın bulgularına göre KLK- 6 ve KLK-7 düzeyleri ile AH’nın patolojisi arasında bir ilişki saptandı.

___

1. Holtzman DM, Goate A, Kelly J, Sperling R. Mapping the road forward in Alzheimer’s disease. Sci Transl Med, 2011; 3 (114): 114-48.

2. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet, 2011; 377 (9770): 1019-31.

3. Sotiropoulou G, Pampalakis G, Diamandis EP. Functional roles of human kallikrein-related peptidases. J Biol Chem, 2009; 284 (48): 32989-94.

4. Parassas I, Elssa A, Poda G, Diamandis EP. Unleashing the therapeutic otential of human kallikreinrelated serine proteases. Na

5. Borgono CA, Michael IP, Diamandis EP. Human tissue kallikreins: Physiologic roles and applications in cancer. Molecular Cancer Research, 2004; 2(5): 257-80.

6. Aronson JK. Potassium channels in nervous tissue. Biochem Pharmacology, 1992; 43 (1): 11-4.

7. Pongs O. Voltage-gatedpotassium channels: from hyperexcitability to excitement. FEBS Letters, 1999; 452 (1-2): 31-5.

8. Bronstein-Sitton S. K+ channels and cancer. Pathways, 2006; 12 (1): 18-20.

9. Kaneko S, Okada M, Iwasa H, Yamakawa K, Hirose S. Genetics of epilepsy: current status and perspectives. Neurosci Res, 2002; 44 (1): 11-30.

10. Marban E. Cardiac channelopathies. Nature, 2002; 415 (3): 213-18.

11. Jurkat- Rott K, LercheH, Lehmann-Horn F. Skeletal muscle channelopathies. J Neurol, 2002; 249 (1): 1493-1502.

12. Nichols CG, Koster JC. Diabetes and insulin secretion: whither KATP? Am J Physiol Endocrinol Metab, 2002; 283 (3): E403-12.

13. Olesen SP, Bundgaard M. ATP-dependent closure and reactivation of inward rectifier K+ channels in endothelial cells. Circ Res, 1993; 73 (3): 492-95.

14. Bayliss DA, Sirois JE, Talley EM. The TASK family: two-pore domain background K+ channels. Mol Interv, 2003; 3 (5): 205-19.

15. Lauritzen I, Zanzouri M, Honore E, Duprat F, Ehrengruber MU, Lazdunski M, et al. K+ dependent cerebellar granule neuron apoptosis. Role of task leak K+ channels. J Biol Chem, 2003; 278 (34): 32068-76.

16. Yildirim Z, Ucgun NI, Yildirim F. The role of oxidative stress and antioxidants in the pathogenesis of agerelated macular degeneration. Clinics (Sao Paulo), 2011; 66(5): 743-46.

17. Yildirim Z, Yildirim F, Ucgun NI, Dincel AS. Choroidal Neovascular Membrane in Age-Related Macular Degeneration is Associated with Increased Interleukin-6. International J Gerontology, 2012; 6(2): 101-4.

18. Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev, 2012; 2012: 1-11.

19. Sutherland GT, Chami B, Youssef P, Witting PK. Oxidative stress inAlzheimer’s disease: Primary villain or physiological by-product? Redox Report, 2013; 18 (4): 134-41.

20. Wolfson C, Wolfson DB, Asgharian M, M’Lan CE, Ostbye T, Rockwood K, et al. A reevaluation of the duration of survival after the onset of dementia. N Eng J Med, 2001; 344 (15): 1111-16.

21. Alzheimer’s A. Alzheimer’s disease facts and figures. Alzheimers Dement, 2010; 6: 158-94.

22. Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspsctive. Cell, 2005; 120: 545-55.

23. Yang Y, Song W. Molecular links between Alzheimer’s disease and Diabetes mellitus. Neuroscience, 2013; 250: 140-50.

24. Singh U, Devaraj S, Jialal I. Vitamin, oxidative stress, and inflammation. Annu Rev Nutr, 2005; 25: 151-74.

25. Diamandis EP, Yousef GM, Petraki C, Soosaipillai AR. Human kallikrein 6 as a biomarker of Alzheimer’s disease. Clin Biochem, 2000; 33 (8): 663-67.

26. Ogawa K, Yamada T, Tsujioka Y, Taguchi J, Takahashi M, Tsuboi Y, et al. Localization of a novel type trypsin‐like serine protease, neurosin, in brain tissues of Alzheimer’s disease and Parkinson’s disease. Psychiatry and Clin Neurosci, 2000; 54(4): 419-26.

27. Zarghooni M, Soosaipillai A, Grass L, Scorilas A, Mirazimi N, Diamandis EP. Decreased concentration of human kallikrein 6 in brain extracts of Alzheimer’s disease patients. Clin Biochem, 2002; 35(3): 225-31.

28. Diamandis EP, Scorilas A, Kishi T, Blennow K, Luo LY, Soosaipillai A, et al. Altered kallikrein 7 and 10 concentrations in cerebrospinal fluid of patients with Alzheimer’s disease and frontotemporal dementia. Clin Biochem, 2004; 37(3): 230-37.

29. Menendez-Gonzalez M, Castro-Santos P, Calatayud MT, Perez-Pinera P, Ribacoba R, Martinez-Rivera M, et al. Plasmatic level of neurosin predicts outcome of mild cognitive impairment. Int Arch Med, 2008; 1(11): 1-7.

30. Iwata A, Maruyama M, Akagi T, Hashikawa T, Kanazawa I, Tsuji S, et al. Alpha-synuclein degradation by serine protease neurosin: implication for pathogenesis of synucleinopathies. Hum Mol Genet, 2003; 12(20): 2625-35.

31. Scarisbric IA, Blaber SI, Lucchinetti CF, Genain CP, Blaber M, Rodriguez M. Activity of a newly identified serine protease in CNS demyelination. Brain, 2002; 125(6): 1283-96.

32. Scarisbrick IA, Linbo R, Vandell AG, Keegan M, Blaber SI, Blaber M, et al. Kallikreins are associated with secondary progressive multiple sclerosis and promote neurodegeneration. Biol Chem, 2008; 389(6): 739-45.

33. Gonzalez H, Ottervald J, Nilsson KC, Sjogren N, Miliotis T, Von Bahr H, et al. Identification of novel candidate protein biomarkers for the post-polio syndrome implications for diagnosis, neurodegeneration and neuroinflammation. J Proteomics, 2009; 71(6): 670-81.

34. Huang X, Moir RD, Tanzi RE, Bush AL, Rogers JT. Redox-active metals, oxidative stress and Alzheimer’s disease pathology. Ann NY Acad Sci, 2004; 1012: 153-63.

35. Shimizu-Okabe C, Yousef GM, Diamandis EP, Yoshida S, Shiosaka S, Fahnestock M. Expression of the kallikrein gene family in normal and Alzheimer’s disease brain. Neuroreport, 2001; 12 (12): 2747-51.

36. Bayani J, Diamandis EP. The physiology and pathobiology of human kallikrein-related peptidase 6 (KLK6). Clin Chem Lab Med, 2011; 50 (2): 211-33.

37. Menendez-Gonzalez M, Castro-Santos P, Suarez A, Calatayud MT, Perez-Pinera P, Martinez-Rivera M, et al. Value of measuring plasmatic levels of neurosin in the diagnosis of Alzheimer’s disease. J Alzheimers Dis, 2008; 14 (1): 59-67.

38. Mitsui S, Okui A, Uemura H, Mizuno T, Yamada T, Yamamura Y, et al. Decreased cerebrospinal fluid levels of neurosin (KLK6), an aging-related protease, as a possible new risk factor for Alzheimer’s disease. Ann N Y Acad Sci, 2002; 977: 216-23.

39. Patra K, Soosaipillai A, Sando SB, Lauridsen C, Berge G, Meller I, et al. Assessment of kallikrein 6 as a cross-sectional and longitudinal biomarker for Alzheimer’s disease. Alzheimers Res Ther, 2018; 10 (1): 1-11.

40. Bossers K, Wirz KT, Meerhoff GF, Essing AH, van Dongen JW, Houba P, et al. Concerted changes in transcripts in the prefrontal cortex precede neuropathology in Alzheimer’s disease. Brain, 2010; 133: 3699-3723.

41. Shropshire TD, Reifert J, Rajagopalan S, Baker D, Feinstein SC, Daugherty PS. et al. Amyloid beta peptide cleavage by kallikren 7 attenuates fibril growth and rescues neurons from Abeta-mediated toxicity in vitro. Biol Chem, 2014; 395: 109-18.

42. Kidana K, Tatebe T, Ito K, Hara N, Kakita A, Saito T, et al. Loss of kallikrein-related peptidase 7 exacerbates amyloid pathology in Alzheimer’s disease model mice. EMBO Mol Med, 2018; 10 (3): 1-13.

43. Lee I, Park C, Kang WK. Knockdown of inwardly rectifying potassium channel Kir2. 2 suppresses tumorigenesis by inducing reactive oxygen speciesmediated cellular senescence. Mol Cancer Ther, 2010; 9(11): 2951-59.
Türk Hijyen ve Deneysel Biyoloji Dergisi-Cover
  • ISSN: 0377-9777
  • Başlangıç: 1938
  • Yayıncı: Türkiye Halk Sağlığı Kurumu
Sayıdaki Diğer Makaleler

Türkiye’de COVID-19 ile ilgili web arama davranışlarının incelenmesi: Google trendleri kullanan bir dijital epidemiyoloji çalışması

Keziban AVCI

The possible role of Kallikrein-6, 7, and potassium channel proteins in Alzheimer’s disease

Erkut BULDUK, Filiz YILDIRIM, Zuhal YILDIRIM

In vitro examination of toothpastes with Cinnamomum cassia methanolic extract

Gülşah TOLLU, Elif ELİUZ

Kars yöresindeki gebelerde Toxoplasma gondii: Seroprevalans ve olası risk faktörleri

NERİMAN MOR, Funda DEMİRCİ

The evaluation of analytical performance of Total PSA and Free PSA tests by using 6-sigma method

ÇİĞDEM YÜCEL, Müjgan ERCAN

Alzheimer hastalığında Kallikrein-6, 7 ve potasyum kanal proteinlerinin olası rolü

Erkut Baha BULDUK, Zuhal YILDIRIM, Filiz YILDIRIM

Kan donörlerinde Brucella seropozitifliğinin araştırılması

Kamber SÜMER, HÜSEYİN GÜDÜCÜOĞLU, Mehmet PARLAK, Mehmet PARLAK, Yasemin BAYRAM

Bazı hidrazon ve kalkon türevlerinin biyolojik aktivite taraması

Begüm EVRANOS AKSÖZ, Fatma KAYNAK ONURDAĞ, Erkan AKSÖZ, Selda ÖZGEN ÖZGACAR

Pulmoner ve ekstrapulmoner örneklerden üretilen S. maltophilia izolatlarının biyofilm oluşturma özelliklerinin karşılaştırılması

Kemal BİLGİN, Yeliz TANRIVERDİ ÇAYCI, İlknur BIYIK, Demet GÜR VURAL, Elif Gülsüm TORUN, Asuman BİRİNCİ

Total PSA ve serbest PSA testlerinin analitik performansının 6-sigma yöntemi ile değerlendirilmesi

Çiğdem YÜCEL, Müjgan ERCAN