Geçici orta serebral arter oklüzyonu ile oluşturulan serebral iskemi modeli

Beynimiz ortalama 1500 g ağırlığında olup toplam vücut ağırlığımızın yaklaşık %2’sine karşılık gelmesine rağmen kardiyak debinin yaklaşık olarak %20’sini kullanmaktadır. Serebral kan akımı beynin beslenmesinde en önemli yeri oluşturmakta ve seçilmiş bir beyin bölgesinde veya tüm beyinde oluşan serebral kan akımındaki azalma sonucu beyin iskemisi gerçekleşmektedir. Serebral iskemi, beyni besleyen damarlarda veya kanın özelliklerine bağlı olarak damarların tıkanması ya da kanaması sonucu oluşmaktadır. Dünyada yılda yaklaşık olarak 17 milyon inme vakası görülmekte ve ülkemizde ise yılda yaklaşık 132.000 vaka görülmektedir. İnme vakaları her geçen yıl daha da arttığından dolayı gelecekte sağlıkla ve ekonomiyle ilgili sorunlara neden olacağı tahmin edilmekte, inmenin önlenmesi ve etkin tedavilerin uygulanması büyük önem arz etmektedir. Serebral iskemi tedavisi araştırmalarında yeni ajanların keşfedilmesi ve yeni tedavi protokollerinin geliştirilmesi için deneysel hayvan modelleri tercih edilmektedir. İnsanlardaki serebral iskemik hastalıkların fizyopatolojisinin araştırılmasında sıklıkla sıçan ve fare gibi kemirgenler üzerinde yapılan geçici global serebral iskemi, geçici fokal serebral iskemi ve geçici ön beyin iskemi modellerikullanılmaktadır. Klinikte en fazla karşılaşılan iskemi tipi, fokal serebral iskemi olup en önemli nedenleri internal karotis arter veya onun en büyük dalı olan orta serebral arterin oklüzyonudur. Geçici serebral iskemi hayvan modelleri karotis ve/veya vertebral arter oklüzyonu ile insanlarda oluşan iskemiyi çok güzel taklit etmektedir. Geçici orta serebral arter oklüzyonu ile oluşturulan iskemi modeli, inmenin patofizyolojisini araştırmada en yaygın kullanılan modellerden biridir. Bu derlemede; serebral iskeminin epidemiyolojisi, patofizyolojisi ve deneysel serebral iskemi hayvan modelleri arasında en çok kullanılan orta serebral arter oklüzyon yöntemi ile ilgili bilgiler sunulmuştur. Bu bilgiler ışığında, serebral iskemi tedavisi çalışmalarında sıklıkla tercih edilen geçici orta serebral iskemi modeli oluşturulmasında dikkat edilmesi gereken konular hakkında önemli bilgiler edinilmiş olunacaktır.

Cerebral ischemia model created by transient middle cerebral artery occlusion

Our brain weighs an average of 1500 g and uses approximately 20% of the cardiac output, although it corresponds to approximately 2% of our total body weight. Cerebral blood flow constitutes the most important place in the nutrition of the brain and cerebral ischemia occurs as a result of a decrease in cerebral blood flow in a selected brain region or the whole brain. Cerebral ischemia occurs as a result of blockage or bleeding in the vessels feeding the brain or depending on the characteristics of the blood. There are approximately 17 million stroke cases per year in the world, and approximately 132.000 cases are seen annually in our country. Since stroke cases are increasing every year, it is predicted that it will cause health and economic problems in the future, and the prevention of stroke and the application of effective treatments are of great importance. Experimental animal models are preferred for discovering new agents and developing new treatment protocols in cerebral ischemia treatment research. Transient global cerebral ischemia, transient focal cerebral ischemia and transient forebrain ischemia models are mostly used in rodents such as rats and mice to investigate the pathophysiology of cerebral ischemic diseases in humans. The most common type of ischemia encountered in the clinic is focal cerebral ischemia and the most important causes are occlusion of the internal carotid artery or its largest branch, the middle cerebral artery. Transient cerebral ischemia animal models (with carotid and / or vertebral artery occlusion) mimic very well human ischemia. The ischemia model created by transient middle cerebral artery occlusion is one of the most widely used models in investigating the pathophysiology of stroke. In this review; information on the epidemiology, pathophysiology of cerebral ischemia and middle cerebral artery occlusion method, which is the most used animal models of experimental cerebral ischemia, are presented. In light of this information, cerebral ischemia treatment studies often preferred model of transient middle cerebral ischemia important information about the issues to be considered in the creation will be acquired.

___

  • 1. Kablan Y. İnme: Epidemiyoloji ve Risk Faktörleri. Türkiye Klinikleri. 2018; ; 1-19.
  • 2. Akcay G. Deneysel Serebral İskemi Modeline Bağlı Öğrenme ve Hafıza Değişikliklerine Transkraniyal Doğru Akım Stimülasyonunun Etkilerinin Araştırılması, Doktora Tezi, Akdeniz Üniversitesi Sağlık Bilimleri Enstitüsü 2020.
  • 3. Akcay G, Aslan M, Derin N. Serebral İskemi Sonrası Motor Fonksiyonların Tedavisinde Transkraniyal Doğru Akım Stimülasyonu Etkileri. 18. Ulusal Sinirbilim Kongresi. Kasım, 6-9 Ankara-Türkiye2020.
  • 4. Akcay G, Derin N. Effects of Transcranial Direct Current Stimulation on Learning and Memory Changes after Experimental Cerebral Ischemia. in 4th International Congress of Turkish Neuroendocrinology Society (4th TNED Congress). November, 26-28 Istanbul- Turkey,2020.
  • 5. Gupta YK, Briyal S. Animal models of cerebral ischemia for evaluation of drugs. Indian J Physiol Pharmacol, 2004; 48 (4); 379-94.
  • 6. Singh DP, Chopra K. Verapamil augments the neuroprotectant action of berberine in rat model of transient global cerebral ischemia. Eur J Pharmacol, 2013;720 (1-3); 98-106.
  • 7. Kumral E. Santral Sinir Sisteminin Damarsal Hastalıkları. İkinci Baskı Güneş Tıp Kitapevleri, 2011.
  • 8. Kaya D, Özdemir YG Serebral Kan Akımı ve Metabolizması, Kumral E. Santral Sinir Sisteminin Damarsal Hastalıkları. İkinci Baskı Güneş Kitapevleri, 2011,191-202.
  • 9. Astrup J. Energy-requiring cell functions in the ischemic brain. Their critical supply and possible inhibition in protective therapy. J Neurosurg, 1982; 56 (4); 482-97.
  • 10. Siesjo BK, Bengtsson F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab, 1989; 9 (2);127-40.
  • 11. Oğul E. Klinik Nöroloji. Birinci Baskı Nobel ve Güneş Kitapevi, 2002.
  • 12. Sahan M, Satar S, Koç AF, Sebe A. İskemik İnme ve Akut Faz Reaktanları. Arşiv Kaynak Tarama Dergisi, 2010; 19 (2); 85-140.
  • 13. Berg JM, Tymoczko JL, Stryer L. The Glycolytic Pathway Is Tightly Controlled. 5th edition Biochemistry, 2002.
  • 14. Sims NR, Muyderman H. Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta, 2010;1802 (1); 80-91.
  • 15. Yager JY, Brucklacher R, Vannucci RC.Cerebral energy metabolism during hypoxia-ischemia and early recovery in immature rats. Am J Physiol, 1992; 262 (3 Pt 2);672-7.
  • 16. Zhang Y, Chen Z, Girwin M, Wong T. Remifentanil mimics cardioprotective effect of ischemic preconditioning via protein kinase C activation in open chest of rats. Acta Pharmacol Sin, 2005; 26 (5); 546-50.
  • 17. Simard JM, Tarasov KV, Gerzanich V. Nonselective cation channels, transient receptor potential channels and ischemic stroke. Biochim Biophys Acta, 2007; 1772 (8); 947-57.
  • 18. Bogousslavsky J, Van Melle G, Regli F. The Lausanne Stroke Registry: analysis of 1,000 consecutive patients with first stroke. Stroke, 1988; 19 (9);. 1083-92.
  • 19. Liang D, Dawson TM, Dawson VL. What have genetically engineered mice taught us about ischemic injury? Curr Mol Med, 2004; 4(2); 207- 25.
  • 20. Shalak L, Perlman JM. Hypoxic-ischemic brain injury in the term infant-current concepts. Early Hum Dev, 2004; 80 (2); 125-41.
  • 21. Xing, C, Arai K, Lo EH, Hommel M.Pathophysiologic cascades in ischemic stroke. Int J Stroke, 2012; 7(5);378-85.
  • 22. Chan PH. Role of oxidants in ischemic brain damage. Stroke, 1996; 27(6); 1124-9.
  • 23. Simonian NA,Coyle JT. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol, 1996; 36; 83-106.
  • 24. Nicotera P, Lipton SA. Excitotoxins in neuronal apoptosis and necrosis. J Cereb Blood Flow Metab, 1999; 19(6); 583-91.
  • 25. Yamashima T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol, 2000; 62(3);273-95.
  • 26. Hillered L, Hallström A, Segersvärd S, Persson L, Ungerstedt U. Dynamics of extracellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J Cereb Blood Flow Metab, 1989; 9(5);607-16.
  • 27. Davalos A, Shuaib A, Wahlgren NG Neurotransmitters and pathophysiology of stroke: evidence for the release of glutamate and other transmitters/mediators in animals and humans. J Stroke Cerebrovasc Dis, 2000; 9(6 Pt 2); 2-8.
  • 28. Lee JM, Grabb MC, Zipfel GJ, Choi DW. Brain tissue responses to ischemia. J Clin Invest, 2000; 106(6); 723-31.
  • 29. Yamashima T,Tonchev AB, Tsukada T, Saido TC, Imajoh-Ohmi S, Momoi T. Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. Hippocampus, 2003; 13(7); 791-800.
  • 30. Memezawa H, Smith ML, Siesjo BK. Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke, 1992; 23(4); 552-9.
  • 31. Salford LG, Plum F, Brierley JB. Graded hypoxiaoligemia in rat brain. II. Neuropathological alterations and their implications. Arch Neurol, 1973; 29(4);234-8.
  • 32. Kirdajova DB, Kriska J, Tureckova J, Anderova M. Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells. Front Cell Neurosci, 2020; 14; 51.
  • 33. Ghosh A, Sarkar S, Mandal AK, Das N. Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats. PLoS One, 2013; 8(4); e57735.
  • 34. Bouma GJ, Muizelaar JP, Stringer WA, Choi SC, Fatouros P, Young HF. Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg, 1992; 77(3); 360-8.
  • 35. Suarez JI. Outcome in neurocritical care: advances in monitoring and treatment and effect of a specialized neurocritical care team. Crit Care Med, 2006; 34(9 Suppl);S232-8.
  • 36. Yuan HJ, Zhu XH, Luo Q, Wu YN, Kang Y, Jiao JJ, et al. Noninvasive delayed limb ischemic preconditioning in rats increases antioxidant activities in cerebral tissue during severe ischemia-reperfusion injury. J Surg Res, 2012; 174(1);176-83.
  • 37. Li MH, Inoue K, Si HF, Xiong ZG. Calciumpermeable ion channels involved in glutamate receptor-independent ischemic brain injury. Acta Pharmacol Sin, 2011; 32(6); 734-40.
  • 38. Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem, 2005; 12(10); 1161-208.
  • 39. Ward JD, Becker DP, Miller JD, Choi SC, Marmarou A, Wood C. Failure of prophylactic barbiturate coma in the treatment of severe head injury. J Neurosurg, 1985; 62(3); 383-8.
  • 40. Xiong L. Neuroanesthesia and neuroprotection: where are we now? Chinese Medical Journal, 2006; 119(11);. 883-886.
  • 41. Sivenius J, Tuomilehto J, Immonen-Räihä P, Kaarisalo M, Sarti C, Torppa J, et al. Continuous 15-year decrease in incidence and mortality of stroke in Finland: the Finstroke study. Stroke, 2004; 35(2); 420-5.
  • 42. Gasche Y, Fujimura M, Morita-Fujimura Y, Copin JC, Kawase M, Massengale J, et al. Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood-brain barrier dysfunction. J Cereb Blood Flow Metab, 1999; 19(9); 1020-8.
  • 43. Granger DN, Rutili G, McCord JM. Superoxide radicals in feline intestinal ischemia. Gastroenterology, 1981; 81(1); 22-9.
  • 44. Perlman JM. Intervention strategies for neonatal hypoxic-ischemic cerebral injury. Clin Ther, 2006; 28(9); 1353-65.
  • 45. Wyatt J. Applied physiology: brain metabolism following perinatal asphyxia. Current Paediatrics, 2002; 12(3);227-231.
  • 46. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989; 20(1); 84-91.
  • 47. Lee S, Hong Y, Park S, Lee SR, Chang KT, Hong Y. Comparison of surgical methods of transient middle cerebral artery occlusion between rats and mice. J Vet Med Sci, 2014; 76(12); 1555-61.
  • 48. Yang WJ, Wen HZ, Zhou LX, Luo YP, Hou WS, Wang X, et al. After-effects of repetitive anodal transcranial direct current stimulation on learning and memory in a rat model of Alzheimer’s disease. Neurobiol Learn Mem, 2019; 161; 37-45.
  • 49. Sharifi ZN,, Abolhassani F, Hassanzadeh G, Zarrindast MR, Movassaghi SNeuroprotective Treatment With FK506 Reduces Hippocampal Damage and Prevents Learning and Memory Deficits After Transient Global Ischemia in Rat. Archives of Neuroscience, 2013; 1; 35-40.
  • 50. Schimidt HL, Vieira A, Altermann C, Martins A, Sosa P, Santos FW, et al. Memory deficits and oxidative stress in cerebral ischemiareperfusion: neuroprotective role of physical exercise and green tea supplementation. Neurobiol Learn Mem, 2014;. 114;. 242-50
  • 51. Braun R, Klein R, Walter HL, Ohren M, Freudenmacher L, Getachew K et al. Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke. Exp Neurol, 2016; 279;. 127-136
  • 52. Pascual JM, Carceller F, Roda JM, Cerdán S. Glutamate, glutamine, and GABA as substrates for the neuronal and glial compartments after focal cerebral ischemia in rats. Stroke, 1998; 29(5); 1048-56; discussion 1056-7
  • 53. Pulsinelli,WA. The therapeutic window in ischemic brain injury. Curr Opin Neurol, 1995; 8(1);3-5
  • 54. Krzyżanowska W, Pomierny B, Filip M, Pera J. Glutamate transporters in brain ischemia: to modulate or not? Acta Pharmacol Sin, 2014; 35(4); 444-62
  • 55. Hu Y, Zhan Q, Zhang H, Liu X, Huang L, Li H. Increased Susceptibility to Ischemic Brain Injury in Neuroplastin 65-Deficient Mice Likely via Glutamate Excitotoxicity. Front Cell Neurosci, 2017; 11; 110
  • 56. Chen JC, Hsu-Chou H, Lu JL, Chian YC, Huang HM, Wang HL et al. Down-regulation of the glial glutamate transporter GLT-1 in rat hippocampus and striatum and its modulation by a group III metabotropic glutamate receptor antagonist following transient global forebrain ischemia. Neuropharmacology, 2005; 49(5); 703-14
  • 57. Shahjouei S, Cai PY, Ansari S, Sharififar S, Azari H, Ganji S,et al., Middle Cerebral Artery Occlusion Model of Stroke in Rodents: A Stepby- Step Approach. J Vasc Interv Neurol, 2016; 8(5); 1-8
Türk Hijyen ve Deneysel Biyoloji Dergisi-Cover
  • ISSN: 0377-9777
  • Başlangıç: 1938
  • Yayıncı: Türkiye Halk Sağlığı Kurumu