Önemli bir kimyasal silah grubu: Sinir ajanları

Özet: Modern kimyanın gelişimi sonucunda ortaya çıkan etkin kimyasal silahların en önemli gruplarından bir tanesini oluşturan ve II. Dünya savaşı öncesi geliştirilen sinir ajanları, toksik ve klinik etkilerini kolinerjik kavşaklarda bulunan asetilkolinesteraz enzimini geri dönüşümsüz olarak inhibe ederek ve asetilkolinin aşırı miktarda birikimine neden olarak gerçekleştirirler. Klinik belirtiler; muskarinik (sekretuar bezlerin stimulasyonu, miyozis, solunum sıkıntısı vb), nikotinik (iskelet kaslarında aşırı stimülasyon, tremor flask paralizi vb.) ve santral sinir sistemi (konvülziyonlar, bilinç kaybı, koma vb.) alanlarının etkilenimi ile oluşur. Sinir ajanı maruziyetinde tedavi yaklaşımı; solunum desteği, dekontaminasyon, antidot tedavisi (atropin, oksim, diazepam, pridostigmin bromür) ve destek tedavisi aşamalarını içerir. Dünyanın mevcut konjonktürüne bağlı olarak artan kimyasal ajan kullanımı olasılığı nedeniyle, sağlık personelinin sinir ajanları, etkileri ve maruz kalmış yaralıların tedavisi hakkında bilgi sahibi olması bir gereklilik haline gelmiştir

An important chemical weapon group: Nerve agents

Abstract: As a result of developing modern chemistry, nerve agents, which are one of the most important group of efficient chemical warfare agents, were developed just before Second World War. They generate toxic and clinical effects via inhibiting acetylcholinesterase irreversibly and causing excessive amounts of acetylcholine at cholinergic synapses in the body. Clinical symptoms are occurred as a result of affected muscarinic (stimulation of secretuar glands, miosis, breathing problems etc.), nicotinic (stimulation of skeletal muscles, paralyse, tremors etc.) and central nerve system (convulsions, loss of consciousness, coma etc.) areas. In case of a nerve agent exposure, treatment includes the steps of ventilation, decontamination, antidotal treatment (atropine, oximes, diazepam and pyridostigmine bromide) and supportive theraphy. Because of arising possibility of using chemical warfare agents due to current conjuncture of the world, medical staff should know about nerve agents, their effects and how to treat the casualties exposured to nerve agents.

___

  • 1. Karayılanoğlu T. Kimyasal atakta tıbbi savunma ve pestisitler. Ankara: GATA Basımevi;2003. p.6.
  • 2. Szinicz L. History of chemical and biological warfare agents. 2005 Toxicology;214(3):167-81.
  • 3. NATO Glossary of medical terms and definitions (AMedP-13) Geneva:2000. p.18.
  • 4. Bajgar J., Organophosphates/nerve agents poisoning:mechanism of action, diagnosis, prophylaxis and treatment. Advances In Clinical Chemistry. 2004;38:152-153.
  • 5. Textbook of Military Medicine Medical Aspects Of Chemical And Biological Warfare, Office of The Surgeon General, Department of the Army, United States of America Bethesda, Maryland U.S.A :1997;p.144.
  • 6. Worek F, Koller M, Thiermann H, Szinicz L. Diagnostic aspects of organophosphate poisoning. Toxicology. 2005;214(3):182-9.
  • 7. NATO Handbook On The Medical Aspects Of NBC Defensive Operations AMedP-6(C), Part-III Chemical. Geneva:2006. p.12-39.
  • 8. Kenar L., Karayılanoğlu T. Kimyasal Afetlerde Sağlık Hizmetleri in Afet Tıbbı Eryılmaz&Dizer. Ankara. Ünsal Yayınları; 2005. p.1256.
  • 9. Ellison DH. Handbook of chemical and biological warfare agents. Boca Raton FL: 2000. p.220- 239.
  • 10. Ganong WF. Review of Medical Physiology. Twenty-first edition. San Fransisco: The McGraw-Hill Companies;2003 p.367.
  • 11. Tucek S. Acetylcoenzyme A and the synthesis of acetylcholine in neurones: Review of recent progress. Gen. Physiol. Biophys. 1983; 2(4):313- 24.
  • 12. Patocka J, Kuca K, Jun D. Acetylcholinesterase and butyrylcholinesterase - Important enzymes of human body. Acta Medica (Hradec Králové). 2004;47:11-18.
  • 13. Çokuğraş AN. Butyrylcholinesterase: Structure and physiological çmportance. Türk Biyokimya Dergisi 2003;28(2): 54-61.
  • 14. Treatment of Chemical Agent Casualties and Conventional Military Chemical Injuries. Field Manual No. 8-285. Departments Of The Army,The Navy, And The Air Force And Joint Manual Commandant Marine Corps.Washington DC.1995. p.2-2.
  • 15. Textbook of Military Medicine. Office of the Surgeon General at TMM Publications, Department of the Army. Washington DC.1997.p.131-196.
  • 16. Lotti M. Organophosphorus compounds. In experimental and clinical neurotoxicology (P. S. Spencer and H. H. Schaumburg, eds.) 2nd ed. Oxford Uni press. NY. 2000. p. 898-925.
  • 17. Marrs TC, Maynard RL, Sidell FR. Chemical warfare agents toxicology and treatment. Chicester NY:J. Wiley and Sons;1996. p.469.
  • 18. Vale J.A. Toxicokinetic and Toxicodynamic Aspects of Organophosphorus (Organophosphate) Insecticide Poisoning. Toxicol Lett. 1998;102-103:649-652.
  • 19. Bajgar J. Biological monitoring of exposure to nerve agents. Brit. J. Indian Med. 1992;49:648- 653
  • 20. Saxena A, Doctor BP, Maxwell DM. The role of glutamate-199 in the aging of cholinesterase. Biochem Biophys Res Comm. 1993;197:343- 349.
  • 21. Bird SB, Gaspari RJ, Dickson EW. Early death due to severe organophosphate poisoning is a centrally mediated process. Acad Emerg Med. 2003;10:295-298
  • 22. Worek F, Koller M, Thiermann H, Szinicz L. Diagnostic aspects of organophosphate poisoning. Toxicology. 2005;214:182-189.
  • 23. Yokoyama K, Yamada A, Mimura N. Clinical profiles with sarin poisoning after the Tokyo subway attack (letter). Am J Med. 1996;100:586.
  • 24 Clark RF. Insecticides: organic phosphorus compounds and carbamates. In: Goldfrank LR, Flomenbaum NE, Lewin NA, et al. Goldfrank's Toxicologic Emergencies (7th ed). New York: McGraw-Hill, 2002. p.1346-1360.
  • 25. Nagao M, Takatori T, Matsuda Y. Definitive evidence for the acute sarin poisoning diagnosis in the Tokyo subway. Toxicol Appl. Pharmacol. 1997;144:198-203
  • 26 Tsuchihashi H, Munehiro K, Nishikawa M, Tatsuno M. Identification of metabolites of nerve agent VX in serum collected from a victim. J. Analytic Toxicol. 1998;22:383-388.
  • 27. Okudera H, Morita H, Iwashita T. Unexpected nerve gas exposure in the city of Matsumoto: report of rescue activity in the first sarin gas terrorism. Am. J. Emerg Med. 1997;15:527-528.
  • 28. Koksal N, Buyukbese MA, Guven A. Organophosphate intoxication as a consequence of mouthto-mouth breathing from an affected case. Chest. 2002;122:740-741.
  • 29. Patient decontamination In: Field Management of Chemical Casualties Handbook (2nd ed.). Chemical Casualty Care Division U.S. Army Medical Research Institute of Chemical Defense Aberdeen Proving Ground. Maryland: 2000. p.48-91.
  • 30. Worek F, Szinicz L, Eyer P, Thiermann H. Evaluation of oxime efficacy in nerve agent poisoning: development of a kinetic-based dynamic model. Toxicology and Applied Pharmacology 2005;209(3): 193-202.
  • 31. Cannard K. The acute treatment of nevre agent exposure. Journal of Neurological Sciences 2006;249:86-94.
  • 32. Katzung BG. Basic and Clinical Pharmacology. Ninth edition. San Fransisco: McGraw-Hill; 2003. p:214-216.
  • 33. Karalliedde L. Organophosphorus poisoning and anaesthesia. Anaesthesia. 1999;54:1073-1088.
  • 34. Aygun D. Diagnosis in acute organophospate poisoning: Report of three interesting cases and review of the literature. Europan Journal of Emergency Medicine, 2004;11(1):55-58.
  • 35. Shih TM. Comparison of several oximes on reactivation of soman-inhibited blood, brain and tissue cholinesterase activity in rats. Arch. Toxicol. 1993;67:637-646.
  • 36. Kwong TC. Organophosphate Pesticides: Biochemistry and clinical toxicology. Therapeutic drug monitoring 2002; 24:144-149.
  • 37. Kuca K, Bartošová L, Jun D, Patocka J, Cabal J, Kassa J. New quaternary pyridine aldoximes as causal antidotes against nerve agents intoxications. Biomed. Papers 2005;149(1):75- 82.
  • 38. Monov A, Dishovsky C. Medical aspects of chemical and biological terrorism. Sofia: Publishing House of the Union of Scientists in Bulgaria; 2005. p.193-208.
  • 39. Kuca K, Bartošová L, Jun D, Cabal J, Kassa J, Kunešová S. In vitro reactivation potency of some acetylcholinesterase reactivators against sarin and cyclosarin induced inhibitions. J. of Applied Toxicology. 2005;25:296-300.
  • 40. Dawson RM. Review of oximes available for treatment of nerve agent poisoning. J. Appl. Toxicol.1994;14:317-331.
  • 41. Medicis JJ, Stork CM, Howland MA. Pharmacokinetics following a loading plus a continuous infusion of pralidoxime compared with the traditional short infusion regimen in human volunteers. J.Toxicol. Clin. Toxicol.1996;34:289-295.
  • 42. Willems JL, De B, Verstraete AG. Cholinesterase reactivation in organophosphorus poisoned patients depends on the plasma concentrations of the oxime pralidoxime methylsulphate and of the organophosphate. Arch. Toxicol. 1993;67:79-84.
  • 43. Kassa J., Review of oximes in the antidotal treatment of poisoning by organophosphorus nevre agents, J. Toxicol. Clin. Toxicol.2002;40: 803-816.
  • 44. www.inchem.org; International Programme on Chemical Safety (WHO/ILO/UNEP) Evaluation antidotes for poisoning by organophosphorus pesticides, diazepam. (Erişim Tarihi: 14 Haziran 2007)
  • 45. Murphy MR, Blick DW, Dunn MA. Diazepam as a treatment for nerve agent poisoning in primates. Aviat. Space Environ. Med. 1993; 6:110-115.
  • 46. Carson D.. Medicines for children, 2nd edition. Royal College of Paediatrics and Child Health Publications. RCPCH; London. 2003. p:187.
  • 47. Marrs TC, Maynard RL, Sidell FR. Treatment and prophylaxis of organophosphate nerve agent poisoning. In: D.Anderson (Ed.), Chemical Warfare Agents: Toxicology and Treatments, Wiley, West Sussex: 1996. p. 101-113.
  • 48. USAMRICD Special Publication 03-01 Pyridostigmine._https://ccc.apgea.army.mil/sare a/products/articles/Pyrido/Memo_03- 01_Pyridostigmine.htm (Erişim tarihi 04 Haziran 2007)
  • 49. Colomb BA, A review of the Scientific literature as it pertains to Gulf War Illnesses. Vol. 2. Pridostigmine Bromide. National Defense Research Institute. A.B.D.: 2002.Chapter 3
  • 50. Technical Memorandum 90-4 Pyridostigmine. United States Army Medical Research Institute Of Chemical Defense. Aberdeen Proving Ground,MarylandA.B.D.1990.p.1-30