Mini-Kanallı Gövde Borulu Isı Değiştirici Tasarımı ve Isınan-Soğuyan Gövde Tarafı Deneysel Performanslarının Karşılaştırılması

Bu çalışmada, mini kanallı gövde borulu bir ısı değiştiricide (MK−GBID) ısınan−soğuyan gövde tarafı koşullarında ısı geçişi ve basınç düşümü deneysel incelenmişve karşılaştırılmıştır. İç çapı 30 mm olan gövde tarafında, döndürülmüş üçgen (60°)düzenleme ile oluşturulan 13 borulu bir boru demeti ve %25 kesme oranlı 4 şaşırtmalevhası kullanılmıştır. Kern yöntemine göre tasarlanan ısı değiştiricide bakır borulardan(mini kanal) oluşan boru demetindeki, boruların dış çapı 3 mm, iç çapı 2 mmve L/D oranı 120’dir. Deneylerde, boru tarafı debisi; deneysel j/f sonuçlarına göreen uygun çalışma koşullarında sabit tutulurken, gövde tarafı debileri; 60−600 L/haralığında değiştirilmiştir. Isınan−soğuyan gövde tarafı için elde edilen deneyselısı taşınım katsayıları; literatürde makro borular için önerilen gövde tarafı bağıntılarıylakarşılaştırılmıştır. Deneysel incelenen debi aralıklarında; gövde tarafındakideneysel ısı taşınım katsayıları, ısınan ve soğuyan koşullarda ortalama ~%5 farkile Kern’nin gövde tarafı tasarım bağıntısıyla uyumludur. Isınan−soğuyan gövdetarafı için deneysel sürtünme faktörü sonuçlarının eğilimi benzerdir. MK−GBIDdeısınan−soğuyan gövde tarafı koşullarında; ısı geçişi ve hidrodinamik etkilerin birarada değerlendirildiği yüzey akış alanı iyileştirme faktörüne göre en uygun çalışmabölgesi Res < 1000’dir.

Design of Mini-Channel Shell and Tube Heat Exchanger and Experimental Performance Comparison of Shell-Side under Heating and Cooling

This study experimentally investigated and compared heat transfer and pressure drop on shell side of a mini-channel shell and tube heat exchanger (MC−STHE) under heating− cooling conditions. A tube bundle consisting of 13 tubes with a rotated triangular arrangement (60°) and 4 baffles with a 25% baffle cut were used on the shell side with an inner diameter of 30 mm. The outer and inner diameters and L/D ratio of the copper tubes (mini channel) in the tube bundle of the heat exchanger designed using Kern method were 3 mm, 2 mm and 120, respectively. In the experiments, the tube-side flow rate was kept constant under optimal operating conditions based on the experimental j/f results, while the shell side flow rates ranged from 60 to 600 L/h. The shell side experimental heat transfer coefficients under heating−cooling conditions were compared with the correlations commonly used for macro-tubes in the literature. The experimental heat transfer coefficients on the shell side are in agreement with Kern’s shell-side design correlation in heating−cooling conditions with an average ~5% of difference within the flow rates ranging from 60 to 600 L/h. The shell side experimental friction factors showed a similar tendency under heating−cooling conditions. The optimal operating region for the shell side of the MC-STHE is Res < 1000 based on the surface flow area goodness factor, which allows for the evaluation of heat transfer and hydrodynamic effects together under heating−cooling conditions.

___

  • [1] Abbasian Arani, A. A., Amani, J., Experimental Study on the Effect of TiO2-Water Nanofluid on Heat Transfer and Pressure Drop, Experimental Thermal and Fluid Science, 42, 107–115, 2012.
  • [2] Danwittayakul, A., Pattamaprom, C., Investigation of Heat Transfer Efficiency of Alumina Nanofluids in Shell and Tube Heat Exchanger, 4th International Conference on Environment, Energy and Biotechnology, 42, 139–142, 2012.
  • [3] Cárdenas Gómez, A. O., Hoffmann, A. R. K., Bandarra Filho, E. P., Experimental Evaluation of CNT Nanofluids in Single-Phase Flow, International Journal of Heat and Mass Transfer, 86, 277–287, 2015.
  • [4] Kashyap, S., Design of a Shell and Tube Heat Exchanger, 3(4), 536–550, 2017.
  • [5] Wadekar, V. V., Heat Exchangers in Process Industry and Mini- and Microscale Heat Transfer, Fifth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, 318–322, 2005.
  • [6] Master, B. I., Chunangad, K. S., Pushpanathan, V., Heat Exchanger Fouling and Cleaning: Fundamentals and Applications, Heat Exchanger Fouling and Cleaning: Fundamentals and Applications, 371–322, 2003.
  • [7] Wang, S., Wen, J., Li, Y., An Experimental Investigation of Heat Transfer Enhancement for a Shell-and-Tube Heat Exchanger, Applied Thermal Engineering, 29, 2433–2438, 2009.
  • [8] Popescu, T., Marinescu, M., Pop, H., Feidt, M., Microchannel Heat Exchangers - Present and Perspectives, UPB Scientific Bulletin, Series D: Mechanical Engineering, 74, 55–70, 2012.
  • [9] Shah, R. K., Advances in Science and Technology of Compact Heat Exchangers, Heat Transfer Engineering, 27, 3–22, 2006.
  • [10] Unverdi, M., Cerci, Y., Performance Analysis of Germencik Geothermal Power Plant, Energy, 52, 192–200, 2013.
  • [11] Unverdi, M., Cerci, Y., Thermodynamic Analysis and Performance Improvement of Irem Geothermal Power Plant in Turkey: A Case Study of Organic Rankine Cycle, Environmental Progress and Sustainable Energy, 37, 1523–1539, 2018.
  • [12] Zhnegguo, Z., Tao, X., Xiaoming, F., Experimental Study on Heat Transfer Enhancement of a Helically Baffled Heat Exchanger Combined with Three-Dimensional Finned Tubes, Applied Thermal Engineering, 24, 2293–2300, 2004.
  • [13] Van de Bor, D. M., Mini-Channel Heat Exchangers for Industrial Distillation Processes, Delft/Netherlands University of Technology, Delft, 2014
  • [14] Kandlikar, S. G., A Roadmap for Implementing Minichannels in Refrigeration and Air-Conditioning Systems - Current Status and Future Directions, Heat Transfer Engineering, 28, 973–985, 2007.
  • [15] Thakkar, K., Kumar, K., Trivedi, H., Thermal & Hydraulic Characteristics of Single Phase Flow in Mini-Channel for Electronic Cooling – Review, International Journal of Innovative Research in Science, Engineering and Technology, 3, 9726–9733, 2014.
  • [16] Hejcik, J., Jicha, M., Single Phase Heat Transfer in Minichannels, EPJ Web of Conferences, 67, 02034, 2014.
  • [17] Trang, N. V., Trung, D. T., Dzung, D. V., Experimental Study of Alternative Minichannel Heat Exchanger for Scooter Radiator, International Journal of Emerging Research in Management and Technology, 6, 46–50, 2017.
  • [18] Gnielinski, V., New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow, International Chemical Enginering, 16, 359–368, 1976.
  • [19] Yan, Y. Y., Lin, T. F., Condensation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Small Pipe, International Journal of Heat and Mass Transfer, 42, 697–708, 1999.
  • [20] Del Col, D., Cavallini, A., Da Riva, E., Mancin, S., CEnsi, G., Shell-and-Tube Minichannel Condenser for Low Refrigerant Charge, Heat Transfer Engineering, 31, 509–517, 2010.
  • [21] Agostini, B., Watel, B., Bontemps, A., Thonon, B., Friction Factor and Heat Transfer Coefficient of R134a Liquid Flow in Mini-Channels, Applied Thermal Engineering, 22, 1821–1834, 2002.
  • [22] Adams, T. M., Abdel-Khalik, S. I., Jeter, S. M., Qureshi, Z. H., An Experimental Investigation of Single-Phase Forced Convection in Microchannels, International Journal of Heat and Mass Transfer, 41, 851–857, 1998.
  • [23] Dutkowski, K., Two-Phase Pressure Drop of Air-Water in Minichannels, International Journal of Heat and Mass Transfer, 52, 5185– 5192, 2009.
  • [24] Hartnett, J. P., Irvine, T. F., Advances in Heat Transfer-Vol.37, Academic Press, New York, 1972.
  • [25] Shin, J. S., Kim, M. H., An Experimental Study of Flow Condensation Heat Transfer inside Circular and Rectangular Mini-Channels, Heat Transfer Engineering, 26, 36–44, 2005.
  • [26] Kandlikar, S. G., Grande, W. J., Evolution of Microchannel Flow Passages-Thermohydraulic Performance and Fabrication Technology, Heat Transf Engneering, 24, 3–17.
  • [27] Mehendale, S.S., Jacobi, A.M., Shah, R.K., Fluid Flow and Heat Transfer at Micro- and Meso-Scales With Application to Heat Exchanger Design, Applied Mechanics Reviews, 53, 175, 2009.
  • [28] Rouizi, Y., Al Hadad, W., Maillet, D., Jannot, Y., Experimental Assessment of the Fluid Bulk Temperature Profile in a Mini Channel through Inversion of External Surface Temperature Measurements, International Journal of Heat and Mass Transfer, 83, 522–535, 2015.
  • [29] Grimison, E. D., Correlation and Utilization of New Data on Flow Resistance and Heat Transfer for Cross- Flow of Gases over Tube Banks, Transactions ASME, 59, 583–594, 1937.
  • [30] Huge, E. C., Experimental Investigation of Effects of Equipment Size on Convection Heat Transfer and Flow Resistance in Cross Flow of Gases over Tube Banks, Transactions ASME, 59, 573–581, 1937.
  • [31] Pierson, O. L., Experimental Investigation of the Influence of Tube Arrangement on Convection Heat Transfer and Flow Resistance in Cross Flow of Gases over Tube Banks, Transaction of ASME, 59, 563–572, 1937.
  • [32] Kays, W. M., London, AL, Compact Heat Exchanger, McGraw-Hill, Florida, 1984.
  • [33] [33] Hammock, G. L., Cross-Flow, Staggered- Tube Heat Exchanger Analysis for High Enthalpy Flows, University of Tennessee, USA, 2011.
  • [34] Sieder, E. N., Tate, G. E., Heat Transfer and Pressure Drop of Liquids in Tubes, Industrial and Engineering Chemistry, 28, 1429–1453, 1936.
  • [35] Hausen, H., Neue Gleichungen Fur Die Wameiibertragung Bei Freier Oder Erzwungerner Stromung, Allg Wärmetechnik, 9, 75–79, 1959.
  • [36] Kern, D. Q., Process Heat Transfer, McGraw- Hill, New York, 1950.
  • [37] R. K., S., Thermal Entry Length Solutions for the Circular Tube and Parallel Plates, In: Proc. 3rd National Heat Mass Transfer Conference Indian Institute of Technology. pp 11–75.
  • [38] Fraas, A. P., Heat Exchanger Design Heat Exchanger Design, John Wiley & Sons, New York, 1989.
  • [39] VDI Heat Atlas, Springer, Dusseldorf, 2010. [40] Nitsche, M., Gbadamosi, R. O., Heat Exchanger Design Guide A Practical Guide for Planning, Butterworth Heinemann, Oxford, 2016.
  • [41] Blasius, H, The Boundary Layers in Fluids with Little Friction, Z Math Phys, 56, 1–37, 1908
  • [42] Shah, R. K., London, A. L., Laminar Flow Forced Convection in Ducts, Academic, New York, 1978.
  • [43] Filonenko, G. K., Hydraulic Resistance in Pipes, Teploenergetika, 1, 40–44, 1954.
  • [44] Kakaç, S., Liu, H., Pramuanjaroenkij, A.,Heat Exchangers Selection, Rating, and Thermal Design, CRC Press, New York, 2012.
  • [45] Kücük, H., Ünverdi, M., Senan Yılmaz, M., Experimental Investigation of Shell Side Heat Transfer and Pressure Drop in a Mini-Channel Shell and Tube Heat Exchanger, International Journal of Heat and Mass Transfer, 143, 2019.
  • [46] Thulukkanam, K., Heat Exchanger Design Handbook, CRC Press, New York, 2013.
  • [47] Ünverdi, M., Kücük, H., Yılmaz, M. S., Experimental Investigation of Heat Transfer and Pressure Drop in a Mini-Channel Shell and Tube Heat Exchanger, Heat and Mass Transfer/ Waerme-und Stoffuebertragung, 55, 1271– 1286, 2019.
  • [48] Sinnott, R. K., Coulson and Richardson’s Chemical Engineering, Vol 6: Chemical Engineering Design, Elsevier Butterworth-Heinemann, Amsterdam, 2005.
  • [49] Edwards, J. E., Design and Rating Shell and Tube Heat Exchangers, Chemical Engineering, J.E.Edwards of P & I Design Ltd, Teesside, 2008.
  • [50] TEMA, Standards of the Tubular Exchanger Manufacturers Association, New York, 2007.
  • [51] Rohsenow, W. M., Hartnett, J. R., Cho, Y. I., Handbook of Heat Transfer Fundamentals, McGraw-Hill, New York, 1998.
  • [52] Bejan, A., Kraus, A.D., Heat Transfer Handbook, John Wiley & Sons Inc., Hoboken, New Jersey, 2003.
  • [53] Cao, E., Heat Transfer in Process Engineering, McGraw-Hill Companies, New York, 2010. [54] Thome, J. R., Engineering Data Book III, Wolverine Tube Inc., Switzerland, 2006.
  • [55] Kreith, F., The CRC Handbook of Mechanical Engineering, CRC Press, Boca Raton, 1999.
  • [56] Shah, R. K., Sekulic, D. P., Fundamentals of Heat Exchanger Design, John Wiley & Sons Hoboken, New Jersey, 2003.
  • [57] Unverdi, M., Islamoglu, Y., Characteristics of Heat Transfer and Pressure Drop in a Chevron- Type Plate Heat Exchanger with Al2O3/ Water Nanofluids, Thermal Science, 21, 2379– 2391, 2017.
  • [58] Kline, S. J., Mcclintock, F. A., Describing Uncertainties in Single Sample Experiments, Mechanical. Engineering, 75, 3–8.
  • [59] Aghayari, R., Maddah, H., Ashori, F., Hakiminejad, A., Aghili, M., Effect of Nanoparticles on Heat Transfer in Mini Double-Pipe Heat Exchangers in Turbulent Flow, Heat and Mass Transfer/Waerme- und Stoffuebertragung, 51, 301–306, 2014.
  • [60] Arya, H., Sarafraz, M. M., Pourmehran, O., Arjomandi, M., Heat Transfer and Pressure Drop Characteristics of MgO Nanofluid in a Double Pipe Heat Exchanger, Heat Mass Transf und Stoffuebertragung, 55, 1769–1781, 2019.
  • [61] Farajollahi, B., Etemad, S. G., Hojjat, M., Heat Transfer of Nanofluids in a Shell and Tube Heat Exchanger, International Journal of Heat and Mass Transfer, 53, 12–17, 2010.
  • [62] Mangrulkar, C. K., Kriplani, V. M., Dhoble, A. S., Experimental Investigation of Convective Heat Transfer Enhancement Using Alumina/ Water and Copper Oxide/Water Nanofluids, Thermal Science, 2015, 1–12, 2015.
  • [63] Liu, D., Yu, L., Single-Phase Thermal Transport of Nanofluids in a Minichannel, Journal of Heat Transfer, 133, 031009, 2010.
  • [64] Coker, A. K., Ludwig’s Applied Process Design for Chemical and Petrochemical Plants: Fourth edition, Elsevier Butterworth-Heinemann, Amsterdam, 2010.