Sıvı nikel ve bakırın yapısal özelliklerinin moleküler dinamik simülasyonu ile incelenmesi

Bu çalışmada, sıvı nikel ve bakırın yapısal özellikleri moleküler dinamik simülasyonu ile geniş bir sıcaklık aralığında incelenmiştir. Atomlar arası etkileşmeler Lennard-Jones (LJ) potansiyeli ile ifade edilmiştir. Çalışmada hesaplanan fiziksel büyüklüklerin ortalamaları mikrokanonik toplulukta gerçekleştirilen simülasyonlarda alınmıştır. Yapısal özellikleri incelemede çiftler dağılım fonksiyonu kullanılmıştır. Sıcaklık arttıkça uzun erimli düzenin kaybolduğu ve birinci koordinasyon sayısının azaldığı gösterilmiştir. Ni ve Cu için erime sıcaklığı yakınında hesaplanan r2/r1 oranı deneysel sonuçlarla uyum içerisindedir. Hesaplamada kullanılan LJ potansiyeli sıvı Ni ve Cu’nun yapısal özelliklerini geniş bir sıcaklık aralığında ifade etmiştir.

The investigation of the structural properties of liquid nickel and copper by using molecular dynamics simulation

In this study, the structural properties of liquid nickel and copper are investigated in a wide range of temperature by using molecular dynamics. The interactions between the atoms are described by Lennard-Jones potential. The average values are calculated during microcanonical ensemble simulation. The pair distribution function is used to investigate structural properties. It has been shown that as the temperature increases the long-range order disappears and first coordination number decreases. The calculated value of r2/r1 near the melting points of Ni and Cu are in good agreement with experimental results. The LJ potential used in this calculation describes the structural properties of liquid Ni and Cu in a wide range of temperature.

___

1.Venables D.S. and Schmutternmaer C.A. Structure and dynamics of nonaqueous mixture of dipolar liquids. I. Molecular dynamics simulations. J. Chem Phys. Vol.113, No.8, pp.3249-3260,2000.

2.Folies S.M. Application of the embedded-atom method to liquid transition metals. Phys. Rev. B. Vol.32,No.6,pp.3409-3415, 1985.

3.Maret M., Pomme T., Pasturel A. Structure of $Ni_{8O}Al_{20}$ alloy. Phys. Rev B. Vol.42, No.3. pp. 1598-1604, 1990-11.

4.Wang L., Bian X. and Li H. Structural characteristics of Ag3Au alloy melt and crystal growth by molecular dynamics simulation. Material Letters. Vol.51, pp.7-13,2001.

5.Pasquarello A., Laasonen K., Car R., Lee C. and Vanderbilt D. Ab Initio molecular dynamics for D-electron systems: Liquid copper at 1500 K. Phys. Rev. Lett. Vol.69, No. 13, pp. 1982-1985, 1992.

6.Sadigh B. and Grimvall D. Molecular-dynamics study of thermo dynamical properties of liquid copper.Phys. Rev. B., Vol.54, No.22, pp. 15742-15746, 1996.

7.Alfe D., Kresse G., and Gfilllan M.J. Structure and dynamics of liquid iron under Earth's core condition. Phys.Rev B, Vol.61, No.l, pp.132-142, 2000.

8.Alemany M.M.G., Rey C. and Gallego L.J. Computer simulation study of the dynamical properties of liquid Ni using the embedded-atom model. Phys. Rev B. Vol.58, No.2, pp.685-693, 1998.

9.Alemany M.M.G., Rey C. and Gallego L.J. Transport coefficients of liquid transition metals: A computer simulation study using the embedded atom model. J. Chem. Phys. Vol.109, No. 13, pp.5175-5176, 1998.

10.Alemany M.M.G., Calleja M., Rey C. and Gallego L.J. Casas J., and Gonzalez L.E. A theoretical computer simulation study of static structure and thermodynamic prosperities of liquid transition metals using the embedded atom model. J. Non. Crys. Solids. Vol.250-252, pp.53-58, 1999.

11.Chernee F.J., Baskes M.I. and Deymier P.A. properties of Liquid nickel: a critical comparison of EAM and MEAM calculations. Phys. Rev. B. Vol.65, No.024209, pp. 1-9,2001.

12.Kircchoff F., Holender J.M., and Gillan M. J. Structure, dynamics and electronic structure of liquid Ag-Sn alloy investigated by ab initio simulation. Phys. Rev. B, Vol.54, Nol., pp. 54190-54202,1996.

13.Kircchoff F., Mehl M.J., Papanicolaou N.I., Papaconstantopoulos D.A. and Khan F.S. Dynamical properties of Au from tight-binding molecular-dynamics simulations. Phys. Rev. B. Vol.63, No.19, pp195101-195106,2001.

14.Hui L., Xiufang B. and Jingxiang Z. Computation of liquid $Cu_{70}Ni_{30}$ alloy structure using EAM in rapid cooling and heating process. Mater. Science Eng. A. Vol.271, ppl 16-121, 1999.

15.Hui L., Feng D., Xiufang B. and Gaunghou W. Molecular dynamics study of ikosehedral ordering and defect in the Ni3Al liquid and glasses. Chem. Phys Lett. Vol.354, pp.466-473, 2002.

16.Hui L., Gaunghou W., Jijun Z., and Xiufang B. Cluster structure and dynamics of liquid aluminum under,cooling conditions. Journal of Chem. Phys., Vol. 116, No.24, pp.10809-108015.

17.Urrutia-Banuelos E. and Posada-Amarillas A. and Garzon L. Temperature effect on the local order of liquid Ni, Ag and Pb: a molecular dynamics study. Phys. Rev. B. Vol.66, No. 144205, pp. 1-5, 2002.

18.Urrutia-Banuelos E. and Posada-Amarillas A. Structural and dynamical properties in liquid Ni and Ag by computer simulation. Int. J. of Mod. Phys. B. Vol.17, No.7, pp.1011-1025, 2003.

19.Dalgic S.S. Dalgic S. and Domekeli U. Structural properties of liquid fcc transition metals using the embedded atom method potential. J. of Opt. Electr. and Adv. Mater. Vol.5, No.5, pp. 1263-1270,2003.

20.Chen F.F., Zhang H.F. Qin F.X. and Hu Z.Q. Molecular dynamics study of atomic properties in rapidly cooling Liquid copper. J. of Chem. Phys. Vol.120, No.4, pp. 1826-1831, 2004.

21.Özdemir Kart S., Tomak M., Uludoğan M. and Kart H. Liquid properties of Pd-Ni alloys. J. of Non-Crys. Solids. Vol.337, pp. 101-108, 2004.

22.Alfe D., Kresse G., and Gillan M.J. Structure and dynamics of liquid iron under Earth's core condition.Phys. Rev. B. Vol.61, No1, pp.61132-61142, 2000.

23.Cherne III F.J. and Deymier P.A. Calculation of properties of liquid aluminum with equilibrium and non-equilibrium molecular dynamics. Scrip. Mater. Vol.45, pp.985-991, 2001.

24.Landron C., Soper A.K., Jetkins T.E., Greavas G.N., Hennet L., Coutuees J.P. Measuring Neutron structure factor for liquid alumina and analyzing the radial distribution function by empirical potential structural refinement. J. Non. Crys. Sol. No.293-295, pp.453-457, 2001.

25.Itami T., Munejiri S., Masaki T., Aoki H., Ishii Y., Kamiyama T., Senda Y., Shimojio F., and Hoshino K. Structure of liquid Sn over a wide temperature range from neutron scattering experiments and first principal molecular dynamics simulation: A comparision to liquid Pb. Phys. Rev. B. Vol. 67,No. 064201 pp. 1-12,2003.

26.Agraval P.M., Rice M.B. and Thompson D.L. Predicting trends in rate parameters for self-diffusion on fcc metal surfaces. Surf. Sci. Vol.515, pp.21-35, 2002.

27.Sung P.K., Piorier D.R. and McBride E. Estimating densities of liquid transition-metals and Ni-base superalloys. Mater. Sci. Eng. A. Vol.331, pp.189-197, 1997.

28.Iida T. and Guthrie R.I.L. The Physical Properties of Liquid Metals. Clarendon Press, Oxord, 1993.

29.Nose S. A molecular dynamics method for simulation in the canonical ensemble. Molec. Phys. Vol.52,pp.255-268, 1984.

30.Refson K. Molecular dynamics simulation of solid n-butane. Physica, No. 131, B, p. 256-266, 1985

31.Beeman D. Some multistep methods for use in molecular dynamics calculations. J. Comput. Phys. Vol.20, pp.130-139, 1976.

32.Allen M.P. and Tildesley D.J. Computer Simulation of Liquids. Clarendon, Oxford, 1987.

33.Rappaport D.C. The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge,1988.

34.Haile J.M. Molecular Dynamics Simulation, Elementary Methods. John Wiley & Sons, Inc. New York,1992.

35.Kress R. Graduate Texts in Mathematics, Numerical Analysis. Springer-Verlag, New York, 1998.

36.Waseda Y. The Structure of Non-Crystalline Materials. McGraw-Hill International Book Company, New York. (1980).

37.Holzmann L.M., Adams J.B., Folies S.M., and Hitchan W.N.G. J. Mater. Res. Vol.6, p. 298, 1991.