Güneş destekli ısı pompalı bir kurutucuda mantarın kuruma davranışlarının yapay sinir ağı kullanılarak modellenmesi

Kurutucu, güneş enerjili ve güneş enerjisi destekli ısı pompalı olmak üzere ayrı ayrı 45 °C ve 55 °C kurutma havası sıcaklığı 0.9 m s-1 ve 1.2 m s-1 hava hızlarında mantar kurutularak test edilmiştir. Deneylerden elde edilen nem içeriği (MC), ayrılabilir nem oranı (MR) ve kurutma hızı (DR) değerleri Levenberg-Marquardt (LM) geri yayılım öğrenme algoritması ve Fermi transfer fonksiyonu kullanılarak yapay sinir ağları (YSA) ile modellenmiştir. Geliştirilen modelin istatistiksel geçerliliğinin belirlenmesinde kullanılan çoklu belirleme katsayısı (R2), ortalama hata kareleri karekökü (RMSE), ve ortalama mutlak hata yüzdesi (MAPE) istatistik değerleri kullanılmıştır. R2, RMSE ve MAPE sırasıyla MC için 0.998, 0.0015608, 0.1940471, MR için 0.998, 0.0000971, 0.2214687 ve DR için 0.993, 0.0000075, 0.8627478 olarak elde edilmiştir. Böylece, farklı kurutma şartları için bu modelleme ile mantarın kuruma davranışları başarılı bir şekilde analiz edilebilir.

Modeling of drying behaviors of mushroom in a solar assisted heat pump dryer by using artificial neural network

Dryer was tested by drying mushroom with solar energy and solar assisted heat pump separately at 45 °C and 55 °C drying air temperature and 0.9 m s-1 and 1.2 m s-1 drying air velocities. Moisture content (MC), moisture ratio (MR) and drying rate (DR) which were obtained from experiments were modeled by using Levenberg-Marquardt (LM) the back- propagation learning algorithm and fermi transfer function with artificial neural networks (ANNs). The coefficient of multiple determination (R2), the root means square error (RMSE) and the mean absolute percentage error (MAPE) were used for the determination of statistical validity of the developed model. R2, RMSE and MAPE were determined for MC 0.998, 0.0015608, 0.1940471, MR 0.998, 0.0000971, 0.2214687 and DR 0.993, 0.0000075, 0.8627478 respectively. In this way, drying behaviors of mushroom can be analyzed successfully for different drying conditions with this modeling.

___

  • Aghbashlo M, Mobli H, Rafiee S & Madadlou A (2012). The use of artificial neural network to predict exergetic performance of spray drying process: A preliminary study. Computers and Electronics in Agriculture 88: 32-43
  • Aktaş M, Şevik S, Doğan H & Öztürk M (2012). Fotovoltaik ve termal güneş enerjili sürekli bir kurutucuda domates kurutulması. Tarım Bilimleri Dergisi 18: 287-298
  • Alibaş İ (2012). Asma yaprağının (Vitis vinifera L.) mikrodalga enerjisiyle kurutulması ve bazı kalite parametrelerinin belirlenmesi. Tarım Bilimleri Dergisi 18: 43-53
  • Bala B K, Morshed M A & Rahman M F (2009). Solar drying of mushroom using solar tunnel dryer. International Solar Food Processing Conference, pp. 1-11
  • Balbay A, Sahin O, Karabatak M (2011). An investigation of drying process of shelled pistachios in a newly designed fixed bed dryer system by using artificial neural network. Drying Technology 29(14): 1685–96
  • Best R, Cruz J M, Gutierrez J & Soto W (1996). Experimental results of a solar assisted heat pump rice drying system. Renewable Energy 9: 690-694
  • Boztok K & Erkip N (2002). Meşe mantarının (Lentinula edodes) ağaç kütükleri üzerinde yetiştiriciliği. Ege Üniversitesi Ziraat Fakültesi Dergisi 39(1): 149-155
  • Cakmak G & Yildiz C (2011). The prediction of seedy grape drying rate using a neural network method. Computers and Electronics in Agriculture 75(1): 132- 138
  • Ceylan İ & Aktaş M (2008a). Isı pompası destekli bir kurutucuda fındık kurutulması. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 23(1): 215- 222
  • Ceylan İ & Aktaş M. (2008b). Energy analysis of hazelnut drying system-assisted heat pump. International Journal of Energy Research 32: 971-979
  • Ceylan İ & Aktas M (2008c). Modeling of a hazelnut dryer assisted heat pump by using artificial neural networks. Applied Energy 85: 841-854
  • Chen C R, Ramaswamy H S & Alli I, (2001). Prediction of quality changes during osmo-convective drying of blueberries using neural network models for process optimization. Drying Technology 19(3-4): 507-523
  • Doymaz İ (2013). Determination of ınfrared drying characteristics and modelling of drying behaviour of carrot pomace. Tarım Bilimleri Dergisi 19: 44-53
  • DPT (Devlet Planlama Teşkilatı) 2001. Bitkisel üretim özel ihtisas komisyonu sebzecilik alt komisyon raporu, DPT Sekizinci Beş Yıllık Kalkınma Planı, 2647-ÖİK: 655, Ankara
  • Erenturk K, Erenturk S, & Tabil L G (2004). A comparative study for the estimation of dynamical drying behavior of echinacea angustifolia: regression analysis and neural network. Computers and Electronics in Agriculture 45: 71–90
  • Erenturk S & Erenturk K (2007). Comparison of genetic algorithm and neural network approaches for the drying process of carrot. Journal of Food Engineering 78(3): 905-912
  • Esen H, Inallı M, Sengur A & Esen M (2008). Performance prediction of a ground coupled heat pump system using artificial neural networks. Expert Systems with Applications 35(4): 1940–1948
  • Esen H & Inallı M (2009). Modeling of a vertical ground coupled heat pump system by using artificial neural networks. Expert Systems with Applications 36(10): 29-38
  • EYMSİB (Ege Yaş Meyve Sebze İhracatçıları Birliği) (2010). 2009-2010 dönemi çalışma raporu, EYMSİB, İzmir, s. 13
  • Gothandapani L, Parvathi K & Kennedy Z J (1997). Evaluation of different methods of drying on the quality of oyster mushroom (Pleurotus sp). Drying Technology 15: 1995-2004
  • Hawlader M N A & Jahangeer K A (2006). Solar heat pump drying and water heating in the tropics. Solar Energy 80(5): 492-499
  • Helvacı Ş, Yapar S & Peker S (1999). Mantar kurutulması için bazı pratik öneriler. Ege Üniversitesi Mühendislik Fakültesi Güncel Konular Serisi, No:1, Kurutma Temel İlkeleri ve Endüstriyel Uygulamaları, (Eds. S. Peker, S. Yapar), 47-52, İzmir
  • Hernandez-Perez J A, Garcia-Alvarado M A, Trystram G & Heyd B (2004). Neural networks for heat and mass transfer prediction during drying of cassava and mango. Innovative Food Science and Emerging Technologies 5: 57-64
  • Hussain M A, Rahman M S, Ng C W (2002). Prediction of pores formation (porosity) in foods during drying: generic modes by the use of hybrid neural network. Journal of Food Engineering 51: 239-248
  • Jambrak A R, Mason T J, Paniwnyk L & Lelas V (2007). Accelerated drying of button mushrooms, brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering 81: 88-97
  • Jang J-S R, Sun C T & Mizutani E (1997). Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence. Prentice-Hall International 42(10): 1482-1484
  • Kahyaoğlu A G (2008). Kurutulmuş sebzeler. TC. Başbakanlık Dış Ticaret Müsteşarlığı İhracatı Geliştirme Etüd Merkezi, SITC No 056.1, Armonize No: 0712
  • Karimi F, Rafiee S, Taheri-Garavand A & Karimi M (2012). Optimization of an air drying process for Artemisia absinthium leaves using response surface and artificial neural network models. Journal of Taiwan Institute of Chemical Engineering 43: 29-39
  • Khoshhal A, Alizadeh Dakhel A, Etemad A & Zereshki S (2010). Artificial neural network of apple drying process. Journal Food Process Engineering 33 (1): 298-313
  • Kulshreshtha M, Singh A, Deepti & Vipul (2009). Effect of drying conditions on mushroom quality. School of Engineering, Taylor’s University College, Journal of Engineering Science and Technology 4(1): 90-98
  • Li H, Dai Y, Dai J, Wang X & Wei L (2010). A solar assisted heat pump drying system for grain in-store drying. Frontiers of Energy and Power Engineering in China 4(3): 386–391
  • Lidhoo C K & Agrawal Y C (2008). Optimizing temperature in mushroom drying. Journal of Food Processing & Preservation 32(6): 881-897
  • Menlik T, Kırmacı V & Usta H (2009). Modeling of freeze drying behaviors of strawberries by using artificial neural network. Journal of Thermal Science and Technology 29(2): 11-21
  • Menlik T, Özdemir M B & Kırmacı V (2010). Determination of freeze-drying behaviors of apples by artificial neural network. Expert Systems with Applications 37(12): 7669-77
  • Midilli A, Olgun H & Ayhan T (1999). Experimental studies of mushroom and polen drying. International Journal of Energy Research 23: 1143-1152
  • Mohanraj M, Jayaraj S & Muraleedharan C (2009). Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks. Applied Energy 86: 1442–9
  • Movagharnejad K & Nikzad M (2007). Modeling of tomato drying using artificial neural network. Computers and Electronics in Agriculture 59: 78-85
  • Nazghelichi T, Kianmehr M H & Aghbashlo M (2011). Prediction of carrot cubes drying kinetics during fluidized bed drying by artificial neural network. Journal of Food Science and Technology 48(5): 542- 50
  • Nehru C, Kumar V, Maheswari C & Gothandapani L (1995). Solar drying characteristics of oyster mushroom. Mushroom Research 4(1): 27-30
  • Omid M, Baharlooei A & Ahmadi H (2009). Modeling drying kinetics of pistachio nuts with multilayer feed- forward neural network. Drying Technology 27(10): 1069-77
  • Pal U S & Chakraverty A (1997). Thin-layer convection- drying of mushrooms. Energy Conversion and Management 38(2): 107-113
  • Palancar M C, Aragon J M & Castellanos J A (2001). Neural network model for fluidized bed dryers. Drying Technology 19(6): 1023-44
  • Poonnoy P, Tansakul A & Chinnan M (2007). Artificial neural network modeling for temperature and moisture content prediction in tomato slices undergoing microwave-vacuum drying. Journal of Food Science 72(1): 42-7
  • Satish S & Pydi Setty Y (2005). Modeling of a continuous fluidized bed dryer using artificial neural networks. International Communications in Heat and Mass Transfer 32: 539-47
  • Sözen A, Arcaklıoğlu E, Menlik T & Özalp M (2009). Determination of thermodynamic properties of an alternative refrigerant (R407c) using artificial neural network. Expert Systems with Applications 36: 4346- 56
  • Sporn P & Ambrose E R (1955). The heat pump and solar energy. In: Proceedings of the World Symposium on Applied Solar Energy, November 1-5, Phoenix, Arizona, USA
  • Şevik S (2011). Isı Pompası ve Güneş Kolektörünün Birlikte Kullanıldığı, Isıtma ve Kurutma Amaçlı Sıcak Hava Üretim Sisteminin Tasarımı, İmalatı ve Deneysel İncelenmesi. Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü (Yayımlanmamış), Ankara
  • Şevik S, Aktaş M, Doğan H & Koçak S (2013). Mushroom drying with solar assisted heat pump system. Energy Conversion and Management 72: 171-178
  • Şevik S (2013). Design, experimental investigation and analysis of a solar drying system. Energy Conversion and Management 68: 227-234
  • Toğrul H, Toğrul İ & İspir A (2005). Mantarların ince tabaka kuruma karakteristiklerinin incelenmesi. III. Tarımsal Ürünleri Kurutma Çalıştayı, Antalya
  • Wu H & Avramidis S (2006). Prediction of timber kiln drying rates by neural networks. Drying Technology 24(12): 1541-5
  • Xanthopoulos G, Lambrinos G & Manolopoulou H (2007). Evaluation of thin-layer models for mushroom (agaricus bisporus) drying. Drying Technology 25: 1471-81
  • Zhang Q H, Yang S X , Mittal G S & Shujuan Y J (2002). Prediction of performance indices and optimal parameters of rough rice drying using neural networks. Biosystems Engineering 83(3): 281-290.
Tarım Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Halit APAYDIN
Sayıdaki Diğer Makaleler

Domates tarlalarında sorun olan mısırlı canavar otunun [Phelipanche aegyptiaca (Pers.) Pomel] mücadelesinde bazı tuzak ve yakalayıcı bitkilerin allelopatik özelliklerinden yararlanma olanakları

Zübeyde Filiz ARSLAN, Eda AKSOY, Serdar EYMİRLİ, Özcan TETİK

Development and evaluation of three metering device models for sugarcane setts

Javad TAGHİNEZHAD, Reza ALİMARDANİ, Ali JAFARY

Mass Balance Criteria in Soil Salinity Management: The Effect of Different Irrigation Water Qualities and Leaching Ratio

Engin YURTSEVEN, Hasan ÖZTÜRK, Sertan AVCI

Reducing the air temperature inside the simple structure greenhouse using roof angle variation

Krit TASHOO, Sirichai THEPA, Ratanachai PAİRİNTRA, Pichai NAMPRAKAİ

Application of multivariate statistical analysis in the assessment of surface water quality in Seyfe Lake, Turkey

Ufuk KARADAVUT, Sultan KIYMAZ

Determination of Cross-Pollination in Safflower (Carthamus tinctorius L.) Using Different Experimental Designs

Nilüfer KOÇAK

Güneş destekli ısı pompalı bir kurutucuda mantarın kuruma davranışlarının yapay sinir ağı kullanılarak modellenmesi

Hikmet DOĞAN, Mustafa AKTAŞ, Seyfi ŞEVİK, M. Bahadır ÖZDEMİR

Bir Güneş Destekli Isı Pompalı Kurutucuda Mantarın Kurutma Davranışlarının Yapay Sinir Ağı Kullanılarak Modellenmesi

Seyfi ŞEVİK, Mustafa AKTAŞ, M. Bahadır ÖZDEMİR, Hikmet DOĞAN

Beyşehir Gölü’ndeki Sudak (Stizostedion lucioperca, Linnaeus 1758) Balığı Kasında Bazı Ağır Metallerin Birikiminin Araştırılması

Emre ÇAĞLAK, Barış KARSLI

Determination of cross-pollination ratio in safflower (Carthamus tinctorius L.) using different experimental designs

Erman BEYZİ, Mesut UYANIK, Bilal GÜRBÜZ, Nilüfer KOÇAK