Fetal beslenmenin erişkin sağlığına etkileri

Fetal beslenme ile intrauterin gelişme ve yetişk dönemde oluşabilecek kronik hastalıklar arasındaki ilişki fetal programlama olarak tanımlanmaktadır. “Fetal Orijin” hipotezine göre; fetal yaşamdak beslenme, fetüsün organ ve sistemlerinde kalıc değişikliklere yol açarak yaşamın ileri dönemlerinde önemli hastalıklar için risk oluşturmaktadır. Gebelik döneminde fetüse sağlanan ortam dolayısıyla plasentanın büyüklüğü, fetüsün beslenme düzeyini etkilemektedir. Yetersiz fetal beslenme, bireyler erişkin dönemde kardiyovasküler, metabolik ve endokrin hastalıklara yatkın hale getirmektedir. Bu derlemede, fetal beslenmenin erişkin sağlığına etkileri tartışılmıştır.

Impact of foetal feeding on adult health

“Foetal programming” is defined as the relationship between foetal feeding and intrauterine development and chronic diseases that may arise in adulthood. According to “foetal origin” hypothesis, feeding in foetal period poses a risk of contracting to serious diseases in later years of life by giving effect to some lasting changes in the organs and systems of foetus. The size of placenta affects the level of nutrition of foetus via environment provided to it during pregnancy. Insufficient foetal feeding makes the foetus susceptible to cardiovascular, metabolic and endocrine diseases in later life. This collection discusses the effects of foetal feeding on adult health.

___

  • 1 . Barker DJP, Thornburg KL. Placental programming of chronic diseases, cancer and lifespan: A review. Placenta 2013;34:841-845.
  • 2. Barker DJP. Fetal origins of coronary heart disease. BMJ 1995;311:171–4.
  • 3. Jaddoe VWV, Witteman CMJ. Hypothesis on the fetal origins of adult diseases: Contributions of epidemiological studies. European Journal of Epidemiology 2006;21:91–102.
  • 4. Hocher B. More than genes: the advanced fetal programming hypothesis. Journal of Reproductive Immunology 2014;104–105:8–11.
  • 5. Godfrey and Barker. Fetal nutrition and adult disease, Am J Clin Nutr 2000;71:1344–1352.
  • 6 . Barker D. Outcome of low birthweight. Horm Res 1994:42:223-30.
  • 7. Oken E, Gillman MW. Fetal origins of obesity. Obesity Research 2003;11:496-506.
  • 8. Symonds ME, Pope M, Sharkey D, Budge H. Adipose tissue and fetal programming. Diabetologia 2012;55:1597–1606.
  • 9. Widdowson EM, McCance RA. A review: new thoughts on growth. Pediatr Res 1975;9:154-6.
  • 10. Rinaudo P, Wang E. Fetal programming and metabolic syndrome. Annu Rev Physiol 2012;74:107-130.
  • 11 . Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, Sachdev HS. Maternal and child undernutrition: consequences for adult health and human capital. Lancet 2008;371:340-357.
  • 12. Adair LS, Fall CHD, Osmond C, et al, for the COHORTS group. Associations of linear growth and relative weight gain during early life with adult health and human capital in countries of low and middle income: findings from five birth cohort studies. Lancet 2013;382: 525–534.
  • 13. Bhutta ZA. Early nutrition and adult outcomes: pieces of the puzzle. Lancet 2013:382;486-487
  • 14. De Boo HA, Harding JE. The developmental origins of adult disease (Barker) hypothesis. Aust N Z J Obstet Gynaecol 2006; 46: 4-14.
  • 15. Cooper WN, Khulan B, Owens S, et al. DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial. FASEB J 2012;26:1782–1790.
  • 16. Leon DA, Lithell HO, Vagero D et al. Reduced fetal growth rate and increased risk from ischaemic heart disease: cohort study of 15,000 Swedish men and women born 1915-29. BMJ 1998; 317:241-5.
  • 17. Gillman MW. Developmental origins of health and disease. N Engl J Med 2005;353:1848-1850.
  • 18. Painter RC, Rooij SR, Bossuyt PM, Simmers TA, Osmond C, Barker DJ, Bleker PO, Roseboom TJ. Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr 2006;84:322–327.
  • 19. Langley-Evans SC. Fetal programming of CVD and renal disease: animal models and mechanistic considerations. Proceedings of the Nutrition Society 2013;72:317–325.
  • 20. Kumaran K, Fall CHD. Fetal origins of coronary heart disease and hypertension and its relevance to India: review of evidence from the mysore studies. Int J Diabetes 2001;21:34-41.
  • 21. Barker DJP, Osmond C, Simmonds SJ et al. The relation of small head circumference and thinness at birth to death from cardiovascular disease. BMJ 1993;306:422-6.
  • 22. Law CM, de Swiet M, Osmond C et al. Initiation of hypertension in utero and its amplification throughout life. BMJ 1993;306:24-27.
  • 23. Phillips DIW, Barker DJP, Hales CN et al. Thinness at birth and insulin resistance in adult life. Diabetologia 1994;37:150-154.
  • 24. Rodriguez P, Condezo-Hoyos LA, Lopez De Pablo AL, Ruiz-Hurtado G, Gutierrez P, Gonzalez MC, Munoz D, Arribas SM. Sex-dependent perinatal alterations in plasma oxidative status in a rat model of fetal programming of hypertension. Cardiovascular Research Supplements 2014;103:102-141.
  • 25. Martyn CN, Barker DJP, Jespersen S, Greenwald S, Osmond C, Berry C. Growth in utero, adult blood pressure and arterial compliance. Br Heart J 1995;73(1):16-21.
  • 26 . Goldenberg RL, Culhane JF. Low birth weight in the United States. Am J Clin Nutr 2007;85:584–590.
  • 27. Maoa C, Shi L, Xua F, Zhanga L, Xu Z. Development of fetal brain renin–angiotensin system and hypertension programmed in fetal origins. Progress in Neurobiology 2009;87:252–263.
  • 28. Law CM, Shiell AW. Is blood pressure inversely related to birthweight? The strength of evidence from a systematic review of the literature. J Hypertens 1996;14:935-941.
  • 29. Dicke JM. Poor obstetrical outcome. In: Paverstein CJ, ed. Clinical obstetrics. Edinburgh: Churchill Livingstone. 1987:421-39.
  • 30. Huxley R, Owen CG, Whincup PH, Cook DG, Colman S, Collins R. Birth Weight and Subsequent Cholesterol Levels. JAMA 2004;292:2755-2764.
  • 31. Jaddoe VWV, Witteman CMJ. Hypotheses on the fetal origins of adult diseases: Contributions of epidemiological studies. European Journal of Epidemiology 2006;21:91-102.
  • 32. Barker DJP, Hales CN, Fall CHD, Osmond C, Phipps K, Clark PMS. Type 2 (non-insulin- dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 1993;36:62–67.
  • 33. Stocker CJ, Arch JRS, Cawthorne MS. Fetal origins of insulin resistance and obesity. Proceedings of the Nutrition Society 2005;64:143–151.
  • 34 . Meas T. Fetal origins of insulin resistance and the metabolic syndrome: A key role for adipose tissue? Diabetes & Metabolism 2010;36:11–20.
  • 35. Relton CL, Davey-Smith G, Ozanne SE. Developmental Epigenetic programming in diabetes and obesity. Environmental Epigenomics in Health and Disease Epigenetics and Human Health 2013; 235-253.
  • 36. Chmurzynska A. Fetal programming: link between early nutrition, DNA methylation, and complex diseasesnure. Nutrition Reviews 2010;68(2):87–98.
  • 37. Pasco JA, Wark JD, Carlin JB, Ponsonby AL, Vuillermin PJ, Morley R. Maternal vitamin D in pregnancy may influence not only offspring bone mass but other aspects of musculoskeletal health and adiposity. Med Hypotheses 2008;71:266–269.
  • 38. Schüz J,Weihkopf T, Kaatsch P. Medication use during pregnancy and the risk of childhood cancer in the offspring. Eur J Pediatr. 2007;166:433–441.
  • 39. Bourre JM. Dietary omega-3 fatty acids for women. Biomedicine and Pharmacotheraphy. 2007;6:105-112.
  • 40. Mol S. Balık yağı tüketimi ve insan sağlığı üzerine etkileri. J. Fisheries Sci. 2008;2(4):601-607.