Planktonlarda Siklomorfozis Üzerine Derleme

Siklomorfizm veya mevsimsel polimorfizm zooplanktonlarda ilk olarak Lauterborn tarafından 1904 yılında tanımlanmıştır. Bu terim günümüzde küçük akuatik organizmalarda abiyotik (sıcaklık, türbülans, ışık) ve biyotik (besin, predatör baskısı) çevrenin etkisiyle vücut yapılarında mevsimsel olarak meydana gelen fiziksel değişiklikler olarak adlandırılmaktadır. Bu mevsimsel değişiklikler türün mevsimsel olarak iki farklı form gibi görünmesine neden olabilmektedir. Siklomorfosiz özellikle planktonik kladoseralar arasında daha fazla gözlemlenirken, ayrıca protozoa, dinoflagellat ve rotiferler arasında da yaygın olarak görülmektedir. Siklomorfosiz sonucu canlıların fiziksel görünüşlerinde ve davranışlarında birtakım değişiklikler söz konusudur. Siklomorfosiz akuatik ortamda organizmanın batma oranını azaltıp yüzmede kolaylık sağlarken, aynı zamanda planktonla beslenen predatörlere karşı da bir savunma mekanizması olarak kullanılmaktadır. Araştırmacılar tarafından bazı avcı türlerin salgıladığı kimyasalların (kairomonlar) canlıda kaudal spin, tepelik gibi vücut çıkıntılarına neden olduğu ortaya konmuştur. Bu derleme de planktonlardaki siklomorfosiz olayı ve meydana gelen değişikliklerden detaylı olarak bahsedilmiştir. 

A Review About Cyclomorphosis in Plankton

Cyclomorphism or seasonal polymorphism was first described in zooplankton by Lauterborn at 1904. This term is nowadays referred to as the seasonal changes in body structures affected by the abiotic (temperature, turbulence, light) and biotic (nutrient, predator, pressure) circulation in small aquatic organisms. These seasonal changes may cause the season to look like two different forms. Cyclomorphosis more prevalent, especially among planktonic cladocerans, but also among protozoa, dinoflagellates and rotifers. Cyclomorphosis is a consequence of changes in the physical appearance and behavior of organisms. Cyclomorphism is reduce the sinking rate of the organism in aquatic environment and facilitates swimming, at the same time, another advantage is the defense against feeding with planktons predators. Researchers have shown that chemicals released by some hunter species (kairomons) cause body spurs such as caudal spin, hump, and defense against the predator. This review also details cyclomorphosis and changes in the plankton. 

___

  • Alam A (1998). Studies on the culture and cyclomorphosis of certain freshwater planktonic Rotifers. Aquaculture and Fisheries Section Department of Zoology Faculty of Life Sciences, Aligarh Muslim University in India.
  • Anonymus (2016a). http://concerncrisis.blogspot.com.tr/2008/01/scenedesmus.html/(Erişim Tarihi:14.04.2016)
  • Anonymus (2016b). Seasonal changes in zooplankton communities. http://www.people.bethel.edu/Zooplankton_cyclomorph. (Erişim Tarihi: 14.04.2016)
  • Beauchamp PDE (1952). Un facteur de la vericabilite chez les rotifers du genre Brachionus. Seances Acad Sci 234: 219–244.
  • Beckius J (2013). Structural cyclomorphosis in populations of low motility zooplankton. University of Wyoming.
  • Benndorf J, Kranich J, Mehner T, Wagner A (2001). Temperature impact on the midsummer decline of Daphnia galeata: an analysis of long-term data from biomanipulated Bautzen Reservoir (Germany). Freshwater Biology 46(2): 199–211.
  • Bertolo A, Lacroix G, Lescher-Moutoue F, Hjelm J (2010). Relationship between fish and the number of horns in Ceratium hırundinella (Dinophyceae): A food web mediated effect on algal morphology. J Phycol 46: 33–40.
  • Black RW, Hairston N Jr (1983). Cyclomorphosis in Eubosmina longispina in a small North American pond. Hydrobiologia 102: 61–67.
  • Brooks JL (1965). Predation and relative helmet size in cyclomorphic Daphnia. Proc Natl Acad Sci 53: 119–126.
  • Brooks JL, Dodson SI (1965). Predation, body size and composition of plankton. Science 150: 28–35.
  • Brooks JL (1966). Cyclomorphosis, turbulence, and overwintering in Daphnia. Verh Int Ver Limnol 16: 1653–1659.
  • Carpenter SR, Kitchell JF, Hodgson JR (1985). Cascading trophic interactions and lake ecosystem productivity. Bio Science 35: 635–639.
  • Cyr H, Curtis JM (1999). Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities. Oecologia 118: 306–315.
  • Dodson SI (1974). Adaptive change in plankton morphology in response to size- selective predation: A new hypothesis of cyclomorphosis. Limnol Oceanogr 19: 721–729.
  • Dodson SI (1989). The ecological role of chemical stimuli for the zooplankton: predator induced morphology in Daphnia. Oecologia (Berl.) 78: 361–367.
  • Engel K, Schreder T, Tollrian R (2014). Morphological defences of invasive Daphnia lumholtzi protect against vertebrate and invertebrate predators. J Plankton Res 36(4): 1140–1145.
  • Florkin M (2012). Metabolism and growth, 2012 - books.google.com. Erişim Tarihi: 15.04.2016
  • Gilbert JJ (1966). Rotifer ecology and embryological induction. Science 151: 1234–1237.
  • Gilbert JJ (1967). Asplanchna and posterolateral spine production in Brachionus calyciflorus. Arch Hydrobiol 64: 1–62.
  • Gilbert JJ (1988). Susceptibilities of ten rotifer species to interference from Daphnia pulex. Ecology 69: 1826–1838.
  • Gilbert JJ, Waage JK (1967). Asplanchna, Asplanchna-substance, and posterolateral spine length variation of the rotifer Brachionus calyciflorus in a natural environment. Ecology 48: 1027–1031.
  • Gilbert JJ, Williamson CE (1978). Predator-prey behavior and its effect on rotifer survival in associations of Mesocyclops edax, Asplanchna girodi, Polyarthra vulgaris, and Keratella cochlearis. Oecologia 37: 13–22.
  • Gilbert JJ (2011). Induction of different defenses by two enemies in the rotifer Keratella tropica: response priority and sensitivity to enemy density. Freshwater Biology 56: 926–938.
  • Gliwicz ZM, Lampert W (1990). Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71(2): 691–702.
  • Green J, Lan OB (1974) Asplanchna and the spines of Brachionus calydflorus in two Javanese sewage ponds. Fresh Water Biology 4: 223–226.
  • Havel JE (2009). Stanley Ivan Dodson: a distinguished ecologist, naturalist, and teacher. Hydrobiologia 636: 1–6.
  • Hessen DO, Van Donk E (1993). Morphological changes in Scenedesmus induced by substances released from Daphnia. Arch Hydrobiol 127: 129–140.
  • Hutchinson GE (1957). A treatise on limnology, 1st ed. Chapman and Hall, 1015, London.
  • Hutchinson GE (1967). A treatiseo n limnology, vol. II. Introduction to lake biology and the limnoplankton. John Wiley ve Sons, New York.
  • Hutchinson TC (1967). Comparative studies of the ability of species to withstand prolonged periods of darkness. J Ecol 55: 291-299.
  • Jacobs J (1966). Predation and rate of evolution in cyclomorphic Daphnia. Int Ver Theor Angew Limnol Verh 16: 1645-1652.
  • Jacobs J (1967). Untersuchungen zur funktion and evolution der zyklomorphose bei Daphnia mit besonderer berucksichtigung der selektion durch Fische. Arch Hydrobiol 62: 467-541.
  • Karsten G (1907). Das indische phytoplankton. Nach dem Material der Deutschen Tiesee-Expedition 1898-1899. Deutsche Tiefsee- Expedition 1898-1899, 2, 1-328, Taf. 35–54.
  • Kerfoot WC (1975). The divergence of adjacent populations. Ecology 56: 1298–1313.
  • Korosi BJ, Kurek J, Smol PJ (2013). A review on utilizing Bosmina size structure archived in Lake sediments to infer historic shifts in predation regimes. Journal of Plankton Research 35: 444–460.
  • Laforsch C, Tollrian R (2004). Extreme helmet formation in Daphnia cucullata induced by small-scale turbulence. Limnol Oceanogr 29(5): 1127–1131.
  • Long JD, Smalley GW, Barsby T, Anderson JT, Hay ME (2007). Chemical cues induce consumer-specific defenses in a bloom-forming marine phytoplankton. Proc Natl Acad Sci 104: 10512–10517.
  • Nunn AD, Harvey JP, Cowx IG (2007). The food and feding relationships of larval and 0+ year juvenile fishes in lowland rivers and connected waterbodies. II. Prey selection and the influence of gape. J Fish Biol 70: 743–757.
  • O’Donnell DR, Fey SB, Cottingham KL (2013). Nutrient availability influences kairomone induced defenses in Scenedesmus acutus (Chlorophyceae). J Plankton Res 35(1): 191–200.
  • Rabus M, Sollradl T, Schaumann HC, Laforsch C (2013). Uncovering ultrastructural defences in Daphnia magna an interdisciplinary approach to assess the predator-induced fortification of the carapace. Plos One 8: e67856.
  • Razak AS, Saisho T (2011). Cyclomorphism in Bosmina longirostris (Crustacea: Cladocera) from Lake Ikeda, Japan. Sains Malaysiana 40(6): 543–547.
  • Riessen HP (1984). The other side of cyclomorphosis: why Daphnia lose their helmets. Limnol Oceanogr 29: 1123–1127.
  • Riessen HP (2012). Costs of predator-induced morphological defences in Daphnia. Freshwater Biology 57: 1422–1433.
  • Riessen HP, Linleyb RD, Altshulerd L, Rabus M, Söllradl T, Schaumannf HC, Laforsche C, Yan NB (2012). Changes in water chemistry can disable plankton prey defenses. Pnas 109: 15377–15382.
  • Rossi V, Maurone C, Benassi G, Ferrari I (2014). Reproduction of Daphnia pulex in a Northern Italy pond. J Limnol 73(3): 459–467.
  • Sakamoto M, Hanazato T (2008). Antennule shape and body size of Bosmina: key factors determining its vulnerability to predacious Copepoda. Limnology 9: 27–34.
  • Sakamoto M, Chang KH, Hanazato T (2007). Plastic phenotypes of antennule shape in Bosmina longirostris controlled by physical stimuli from predators. Limnol Oceanogr 52: 2072–2078.
  • Sommer U, Sommer F, Santer B, Zollner E, Jurgens K, Jamieson C, Boersma M, Gocke K (2003). Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia 135: 639–647.
  • Sprules WG, Carter JCH, Ramcharan CW (1984). Phenotypic associations in the Bosminidae (Cladocera): zoogeographic patterns. Limnol Oceanogr 29: 161–169.
  • Tanyolaç J (2011). Limnoloji. Tatlı su bilimi. 6.Baskı. Hatipoğlu Yayınları.
  • Tollrian R (1995). Predator-induced morphological defences: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76: 1691–1705.
  • Tollrian R, Dodson SI (1999). Inducible defenses in Cladocera: constraints, costs, and multipredator environments. In: The Ecology and Evolution of Inducible Defenses (Eds R. Tollrian & C.D. Harvell), pp. 177–202.
  • Toumi H, Bejaoui M, Boumaiza M (2015). Cyclomorphosis in Daphnia magna and Ceriodaphnia reticulate (Cladocera) from northern Tunisian groundwater: influence of temperature and invertebrates? Crustaceana 88: 1139–1148.
  • Wetzel RG (1983). Limnology, 2nd ed. Saunders. College Publisher, Philadelphia.
  • Wetzel RG (2001). Limnological analyses, 3rd Limnology: lake and river ecosystems.
  • Wojtal A, Frankiewicz P, Lotkowska WI (2004). The evaluation of the role of pelagic invertebrate versus vertebrate predators on the seasonal dynamics of filtering Cladocera in a shallow, eutrophic reservoir. Hydrobiologia 515: 123–135.
  • Wong CK, Sprules WG (1985). Size-selective feeding by the predatory copepod Epischura lacustris Forbes. Can J Fish Aquat Sci 42: 189–193.
  • Xie P, Iwakuma T, Fujii K (1998). Changes in the structure of a zooplankton community during a Ceratium (Dinoflagellate) bloom in a eutrophic fishless pond. J Plankton Res 20: 1663–1678.
  • Yurista PM (2000). Cyclomorphosis in Daphnia lumholtzi induced by temperature. Fresh Water Biology 43: 207–213.
  • Zaret TM (1980). Predation and freshwater communities. Yale University Press, New Haven, London, 155–180.