Bir Kez İyonlaşmış Argon (Ar II)’da Geçiş Olasılığı Hesaplamaları

Bu çalışmada, bir kez iyonlaşmış Argon (Ar II)’un bazı seviyeleri Bu çalışmada, bir kez iyonlaşmış Argon (Ar II)’un bazı seviyeleri arasındaki elektrik dipol geçiş olasılıkları, en zayıf bağlı elektron potansiyel model (WBEPM) teori kullanılarak hesaplanmıştır. Hesaplamalar için gerekli olan parametrelerin belirlenmesinde, yarıçapların beklenen değerleri için sayısal Coulomb yaklaşımı (NCA) ve relativistik olmayan Hartree-Fock (NRHF) dalga fonksiyonları kullanılmıştır. Enerji değerleri ise NIST (National Institute of Standards and Technology)’den alınmıştır. Elde edilen geçiş olasılığı değerleri literatürdeki sonuçlarla karşılaştırılmış ve iyi bir uyum elde edilmiştir. 

The Calculation of Transition Probabilities in Singly Ionized Argon (Ar II)

In this study, the electric dipole transition probability values between some levels in singly ionized argon (Ar II) have been calculated using the weakest bound electron potential model (WBEPM) theory.  The Numerical Coulomb Approximation (NCA) and the numerical nonrelativistic Hartree-Fock (NRHF) wave functions for the expectation values of radii in the determination of parameters needed for calculations have been used. Energy levels have been taken from NIST database. The obtained transition probability values have been compared with results in the literature and, good agreement have been obtained.

___

  • Abbas A, Basha TS, Abdel-Aal ZA (1988). Half-width, shift and transition probability of Ar II lines. Jpn J Appl Phys 27: 804–807.
  • Aparicio JA, Gigosos MA, Mar S (1997). Transition probability measurement in an Ar II plasma. J Phy B At Mol Opt Phys 30: 3141–3157.
  • Ateş Ş, Gökçe Y, Çelik G and Yıldız M (2014). Oscillator strengths and transition probabilities for singly ionized terbium. Can J Phys 92: 1043–1046.
  • Behringer K, Thoma P (1976). Measurement of ultraviolet Argon (II) transition probabilities. J Quant Spect Radiat Trans 16: 605.
  • Belmonte MT, Djurović S, Peláez RJ, Aparicio JA, Mar S (2014). Improved and expanded measurements of transition probabilities in UV Ar II spectral lines. Mon Not R Astron Soc 445: 3345–3351.
  • Biemont E, Träbert E (2000). Transition rates of the resonance line doublet in the Cl I sequence, Ar II-Ge XVI. J Phys B: At Mol Opt Phys 33: 2939–2946.
  • Cowan RD (1981). The theory of atomic structure and spectra. University of California Press, Berkeley.
  • Çelik G, Ateş Ş, Tekeli G (2016). Electric dipole transition probabilities, oscillator strengths, and lifetimes for Co16+. Can J Phys 94: 23–25.
  • Çelik G, Ateş Ş, Erol E (2015). Oscillator strengths and lifetimes for Cu I. Can J Phys 93: 1015–1023.
  • Çelik G, Gökçe Y, Yıldız M (2014). Electric quadrupole transition probabilities for atomic lithium. At Data Nucl Data Tables 100: 792–802.
  • Çelik G, Erol E, Taşer M (2013). Transition probabilities, oscillator strengths and radiative lifetimes for Zn II. J Quant Spect Radiat Trans 129: 263–271.
  • Çelik G, Doğan D, Ateş Ş, Taşer M (2012). Transition probabilities and radiative lifetimes of levels in F I. At Data Nucl Data Tables 98: 566–588.
  • Çelik G, Ateş Ş, Özarslan S, Taşer M (2011). Transition probabilities, oscillator strengths and lifetimes for singly ionized magnesium. J Quant Spect Radiat Trans 112: 2330–2334.
  • Çelik G, Ateş Ş (2008). Calculations of transition probabilities for some excited levels of Na I. Acta Phys Pol A 113: 1619–1627.
  • Çelik G, Çelik E, Kılıç HŞ (2008). Calculation of the 1s-2s two-photon excitation cross - section in atomic hydrogen. Eur J Phys D 50: 237.
  • Çelik G, Ateş Ş (2007). The calculation of transition probabilities for atomic oxygen. Eur J Phys D 44: 433.
  • Çelik G (2007). The calculation of transition probabilities between individual lines for atomic lithium. J Quant Spect Radiat Trans 103: 578.
  • Dipti SD (2016). Electron-impact excitation rate-coefficients and polarization of subsequent emission for Ar+ ion. J Quant Spect Radiat Trans 176: 12–23.
  • Gaigalas G, Fischer CF (1996). Extension of the HF program to partially filled F-subshells. Comput Phys Commun 98: 255.
  • Hibbert A, Hansen JE (1987). Accurate wavefunctions for 2S and 2Po states of Ar II. J Phys B At Mol Phys 20: 245–251.
  • Hibbert A, Hansen JE (1989). Lifetimes of some 3p44p levels in Ar II. J Phys B At Mol Phys 22: 347–351.
  • Hibbert A, Hansen JE (1994). Transitions in Ar II. J Phys B At Mol Phys 27: 3325–3347.
  • Irimia A, Fischer CF (2003). http://nlte.nist.gov/MCHF/Elements/Ar/Cl_18.20.abimchf-lin.dat.mp
  • Karmakar S, Das MB (2007). Lifetime measurement of some excited states belonging to the 3p4nd (n=4–6) configuration of Ar II. Pramana J Phys 69: 477–480.
  • Kramida A, Ralchenko Yu, Reader J, NIST ASD Team (2015). NIST Atomic Spectra Database (ver.5.3), [online]. Available: http://physics.nist.gov/asd [2017, September 22]. National Istitute of Standarts and Technology, Gaithersburg, MD.
  • Lindgard A, Nielsen SE (1977). At Data Nucl Data Tables 19: 533. Lodders K (2008). Ap J 674: 607.
  • Morton DC (1991). Atomic data for resonance absorption lines. i. wavelengths longward of the lyman limit. The Astrophysical Journal Supplement Series 77: 119–202.
  • Verner DA, Verner EM, Ferland GJ (1996). Atomic data for permitted resonance lines of atoms and ions from H to Si, and S, Ar, Ca, and Fe. At Data Nucl Data Tables 64 : 1–180.
  • Wiese WL (1988).The atomic transition probabilities of argon—A continuing challenge to plasma spectroscopy. Journal of Quantitative Spectroscopy & Radiative Transfer 40: 421–427.
  • Zheng NW (1986). A new theoretical model for many-electron atom and ion systems I. Chin Sci Bull 31: 1238–1242.
  • Zheng NW (1987). A new theoretical model for many-electron atom and ion systems II. Chin Sci Bull 32: 1263–1267.
  • Zheng NW (1988). A new outline of atomic theory. Jiang Su Education Press, Nanjing, P.R. China.
  • Zheng NW, Wang T, Yang R, Wu YG (2000a). Theoretical calculation of transition probability for N atom and ions. J Chem Phys 112: 7042–7056.
  • Zheng NW, Wang T, Ma DX, Zhou T, Fan J (2004). Weakest bound electron potential model theory. Int J Quant Chem 98: 281–290.
  • Zheng NW, Wang T (2002). Theoretical resonance transition probabilities and lifetimes for atomic hydrogen. Chem Phys 282: 31.
  • Zheng NW, Sun YJ, Wang T, Ma DX, Zhang Y, Su W (2000b). Transition probability of lithium atom and lithiumlike ions with weakest bound electron wave functions and coupled equations. Int J Quant Chem 76: 51–61.
  • Zheng NW, Wang T, Yang R (2000c). Transition probability of Cu I, Ag I, and Au I from weakest bound electron potential model theory. J Chem Phys 113: 6169–6173.