Bitki Patojeni Virüslerde Proteaz Tipleri ve Fonksiyonları

Bitkileri hastalandıran çok sayıda bitki patojeni virüs bulunmaktadır.  Bitki patojeni virüsler  konukçu hücreleri içerisine girdikten sonra, hayatlarını devam ettirmek ve konukçu içinde çoğalmak için örtü proteinlerinden ayrılırlar. Çoğalma işlemini gerçekleştirmek için yapılarında bulunan enzimleri kullanarak yeni virüsler kopyalarlar. Bu enzimleri proteazlar ve nükleik asit sentezinden sorumlu enzimler (replikasyon enzimleri) oluşturur. Virüslerin genom ifadeleri esnasında proteazlar önemli fonksiyona sahiptir. Bu enzimler genomu fonksiyonel proteinlere işlenmesinde ilk basamağı oluştururlar. Bu derlemede bitki patojeni virüslerin yapıları ve fonksiyonlarından bahsedilmiştir. 

Protease Types and Functions of Plant Pathogenic Viruses

There are numerous virus that infect the plants. After the plant viruses  penetrated in to the host plant cells, they  uncoat from coat protein for surviving and genome expression. Then viruses use the enzymes for replication and genome expression. The important enzymes for genome expression are proteases and replication enzymes. The proteases have important role for replication. In the review, structure of plant pathogenic viruses and functions are discussed. 

___

  • Agrios GN (2005). Plant pathology. Elsevier Academic Press, United States of America, 922.
  • Anonymous (2017). https://www6.inra.fr/pvy_organization_eng/Potato-virus-Y/Genome. (Erişim tarihi: 02.12.2017).
  • Anonymous (2018a). https://en.wikipedia.org/wiki/File:Serine_protease_catalysis.png. (Erişim tarihi: 02.10.2018).
  • Anonymous (2018b). Caulimovirus. https://viralzone.expasy.org/119?outline=all_by_species. (Erişim tarihi: 02.10.2018).
  • Atallah OO, Kang SH, El-Mohtar CA, Shilts T, Bergua M, Folimonova SY (2016). A 50-proximal region of the Citrus tristeza virus genome encoding two leader proteases is involved in virus superinfection exclusion. Virology 489: 108–115.
  • Ballut L, Drucker M, Pugnie` re M, Cambon F, Blanc S, Roquet F, Candresse T, Schmid HP, Nicolas P, Gall P, Badaoui S (2005). HcPro, a multifunctional protein encoded by a plant RNA virus, targets the 20S proteasome and affects its enzymic activities. Journal of General Virology 86: 2595–2603.
  • Bazan JF, Fletterick RJ (1988). Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci USA 85: 7872–7876.
  • Bazan JF, Fletterick RJ (1990). Structural and catalytic models of trypsin-like viral proteases. Semin Virol 1: 311–322.
  • Chen KC, Chiang CH, Raja JA, Liu FL, Tai CH, Yeh SD (2008). A single amino acid of NIa pro of Papaya ringspot virus determines host specificity for infection of papaya. Mol Plant Microbe Interact 21: 1046–1057.
  • Dougherty W, Semler BL (1993). Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiological Reviews 781–822.
  • Fernandez-Rodriguez J, Voigt CA (2016). Post-translational control of genetic circuits using Potyvirus proteases. Nucleic Acids Research 44(13): 6493–6502.
  • Franssen H, Moerman M, Rezelman G, Goldbach R (1984). Evidence that the 32,000-dalton protein encoded by bottom-component RNA of cowpea mosaic virus is a proteolytic processing enzyme. Journal Virology Apr 50(1): 183–190.
  • Gorbalenya AE, Koonin EV, Blinov VM, Donchenko AP (1988). Sobemovirus genome appears to encode a serine protease related to cysteine proteases of picornaviruses. FEBS Lett 236: 287–290.
  • Gorbalenya AE, Donchenko AP, Blinov VM, Koonin EV (1989). Cysteine proteases of positive strains RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett 243: 103–114.
  • Guo B, Lin J, Ye K (2011). Structure of the autocatalytic cysteine protease domain of potyvirus helper-component proteinase. The Journal of Biological Chemistry 286(24): 21937–21943.
  • Huet H, Gal-On Meir EA, Lecoq H, Raccah B (1994). Mutations in the hepler component protease gene of zucchini yellow mosaic virus affect its ability to mediate aphid transmissibility. Journal of General Virology 75: 1407–1414.
  • Li X, Ryan MD, Lamb J W (2000). Potato leaf roll virus protein P1 contains a serine proteinase domain. Journal of General Virology 81: 1857–1864.
  • Li X, Ryan MD, Lamb JW (2000). Potato leafroll virus protein P1 contains a serine proteinase domain. J Gen Virol 81: 1857–1864.
  • Liu YP, Peremyslov VV, Medina V, Dolja VV (2009). Tandem leader proteases of Grapevine leafroll-associated virus-2: host-specific functions in the infection cycle. Virology 383: 291–299.
  • Lutz L, Raikhy G, Leisner SM (2012). Cauliflower mosaic virus major inclusion body protein interacts with the aphid transmission factor, the virion-associated protein, and gene VII product. Virus Res 170: 150–153.
  • Mann KS, Walker M, Sanfaçon H (2017). Identification of cleavage sites recognized by the 3C-like cysteine protease within the two polyproteins of strawberry mottle virus. Front Microbiol 8: 745.
  • Margis R, Pinck L (1992). Effect of site-directed mutagenesis on the presumed catalytic triad and substrate-binding pocket of grapevine fanleaf nepovirus 24-kDa proteinase. Virology 190: 884–888.
  • Pasin F, Simón-Mateo C, García JA (2014). The hypervariable amino-terminus of P1 protease modulates potyviral replication and host defense responses. PLoS Pathog 10(3): e1003985.
  • Plisson C, Drücker M, Blanc S, German-Retana S, Le Gall O, Thomas D, Bron P (2003). Structural characterization of HC-Pro, a plant virus multifunctional protein. J Biol Chem 278: 23753–23761.
  • Prüfer D, Kawchuk L, Monecke M, Nowok S, Fischer R, Rohde W (1999). Immunological analysis of potato leafroll luteovirus (PLRV) P1 expression identifies a 25 kDa RNA-binding protein derived via P1 processing. Nucleic Acids Res 27: 421–425.
  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews 62(3): 597–635.
  • Rodamilans B, Valli A, Antonio Garcia A (2013). Mechanistic divergence between P1 proteases of the family Potyviridae. Journal of General Virology 94: 1407–1414.
  • Rodamilans B, Shan H, Pasin F, García JA (2018). Plant viral proteases: beyond the role of peptide cutters. Frontiers in Plant Science 9.
  • Ryan MD, Flint M (1997). Virus-encoded proteinases of the picornavirus super-group. Journal of General Virology 78: 699–723.
  • Satheshkumar PS, Lokesh GL, Savithri HS (2004). Polyprotein processing: cis and trans proteolytic activities of Sesbania mosaic virus serine protease. Virology 318: 429–438.
  • Sõmera M, Sarmiento C, Truve E (2015). Overview on sobemoviruses and a proposal for the creation of the family Sobemoviridae. Viruses 7: 3076–3115.
  • Taliansky M, Torrance L, Kalinina N (2008). Role of plant virus movement proteins. from: methods in molecular biology, Vol. 451, Plant Virology Protocols: 33 From Viral Sequence to Protein Function Edited by Foster GD, Johansen IE, Hong Y. and Nagy P.D., Humana Press, Totowa, NJ.
  • Tekin N (2008). Türkiye kaynaklı Bacillus spp.’lerin alkalen proteaz üretim kapasiteleri ve enzimlerin kısmen karakterizasyonu. Ankara Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı, Yüksek Lisans Tezi 109.
  • Thole V, Hull R (1998). Rice tungro spherical virus polyprotein processing: identification of a virus-encoded protease and mutational analysis of putative cleavage sites. Virology 247: 106–114.
  • Thompson JR, Kamath N, Perry KL (2014). An evolutionary analysis of the Secoviridae family of viruses. PLoS One 9: e106305.
  • Torruella M, Gordon K, Hohn T (1989). Cauliflower mosaic virus produces an aspartic proteinase to cleave its polyproteins. EMBO J 8: 2819–2825.
  • Verchot J, Carrington JC (1995). Evidence that the potyvirus P1 proteinase functions in trans as an accessory factor for genome amplification. J Virol 69: 3668–3674.
  • Verver J, Goldbach R, Garcia JA, Vos P (1987). In vitro expression of a full-length DNA copy of cowpea mosaic virus B RNA: identification of the B RNA encoded 24-kd protein as a viral protease. EMBO J 6: 549–554.
  • Wang A, Carrier K, Chisholm J, Wieczorek A, Huguenot C, Sanfaçon H (1999). Proteolytic processing of tomato ringspot nepovirus 3C-like protease precursors: definition of the domains for the VPg, protease and putative RNA-dependent RNA polymerase. J Gen Virol 80: 799–809.
  • Wang A, Sanfaçon H (2000). Proteolytic processing at a novel cleavage site in the N-terminal region of the tomato ringspot nepovirus RNA-1-encoded polyprotein in vitro. J Gen Virol 81 2771–2781.