Cam fiber ilave edilen iki farkl geçici restoratif materyalin transvers dayankllnn, elastikiyet modülünün ve maksimum eilme miktarnn incelenmesi

Amaç: Bu çalmann amac, polietil metakrilat (PEMA) ve bis-akril kompozit esasl iki geçici kron-köprü materyaline farkl konsantrasyonlarda cam fiber ilavesinin transvers dayanma, maksimum eilmeye ve elastikiyet modülüne etkisini incelemektir. Materyal Metot: 3 mm boyutunda ksa kesilmi E-cam fiber PEMA ve bis-akril kompozit esasl iki geçici kron-köprü materyaline % 1 ve % 2 orannda ilave edildi (n=10). Fiber ilavesi yaplmayan bis-akril ve PEMA örnekleri kontrol grubu olarak kullanld (n=10). Toplamda 60 adet örnee 1mm/dak balk hz ile Instron Universal test cihaznda 3 nokta bükülme kuvveti uyguland. Transvers dayanm, maksimum eilme ve elastikiyet modülü deerleri hesapland: Her gruptan 1’er örnek scanning elektron mikroskobunda incelendi. statistiksel analiz Kruskal-Wallis testi ile çoklu karlatrmalar ise Siegel-Castellan testi ile yapld. Bulgular: Bis-akril kompozitin elastikiyet modülü ve maksimum eilme özellikleri PEMA’ya göre daha iyi bulunmutur. Ancak her iki materyalin transvers dayanmlar arasnda fark bulunamam tr. Bis-akril kompozit grubuna % 1 ve % 2 cam fiber ilavesi ve PEMA grubuna % 1 cam fiber eklenmesi maksimum eilme, elastikiyet modülü ve transvers dayanm etkilememitir. PEMA grubuna %2 cam fiber ilavesi, maksimum eilmeyi azalt rken elastikiyet modülünü arttrm, transvers dayan m ise etkilememitir. Sonuç: Geçici kron-köprü materyali seçiminde, elastikiyet modülü ve maksimum eilme bak- mndan bis-akril kompozit PEMA’ya göre daha güvenli kullanlabilir. PEMA materyalinin kullanm durumunda ise materyale % 2 konsantrasyonda cam fiber ilavesi maksimum eilme ve elastikiyet modülü bakmndan önerilebilir.

Investigation of transvers strenght, modulus of elasticity and maximum deflection of fiber reinforced two provisional restorative material

Purpose: This study investigated the effects of different concentrations of glass fiber addition on the transverse strength, modulus of elasticity and maximum flexure of polyethylmethacrylate (PEMA) and bis-acryl composite based provisional crown materials. Materials and Methods: Test specimens (n=10) of 1% and 2% weight fiber concentrations were prepared with either a bis-acryl composite or a PEMA provisional crown material. Bis-acryl composite or PEMA provisional crown specimens without any fiber reinforcement were used as control groups. The transverse strength, maximum flexure and modulus of elasticity was measured with the 3-point bending test.3-point bending test was applied to sixty specimens with a universal testing machine at a crosshead speed of 1 mm/min. One specimen for each group was evaluated in SEM. Statistical analysis was performed with Kruskal-Wallis test and multiple comparisons were done with Siegel-Castellan test. Results: Maximum flexure and modulus of elasticity properties of bis-acryl composite were found significantly better than the PEMA material. However, both of the materials showed same transverse strength values. 1 % and 2 % concentration of glass fiber addition to the bis-aryl composite and 1 % concentration of glass fiber addition to the PEMA did not show significant effect for transverse strength, maximum flexure and modulus of elasticity. While 2 % concentration of glass fiber addition to the PEMA decreasing the maximum flexure, it increased the modulus of elasticity and it did not affect the transverse strength. Conclusion: Bis-acryl composite could be used more safely than PEMA as a provisional crown material in terms of maximum flexure and modulus of elasticity. In the case of using PEMA as a provisional crown material, the addition of 2 % glass fiber could be suggested in terms of maximum flexure and modulus of elasticity.

___

  • 1. Tacir I, Kama J, Zortuk M, Eskimez S. Flexural properties of glass fibre reinforced acrylic resin polymers. Aust Dent J 2006;51:52-6.
  • 2. Hamza TA, Rosenstiel SF, Elhosary MM, Ibraheem RM. The effect of fiber reinforcement on the fracture toughness and flexural strength of provisional restorative resins. J Prosthet Dent 2004;91:258-64.
  • 3. Zortuk M, Kilic K, Uzun G, Ozturk A, Kesim B. The effect of different fiber concentrations on the surface roughness of provisional crown and fixed partial denture resin. Eur J Dent 2008;2(3):185-90.
  • 4. Karacaer O, Polat TN, Tezvergil A, Lassila LV, Vallittu PK. The effect of length and concentration of glass fibers on the mechanical properties of an injection- and a compression- molded denture base polymer. J Prosthet Dent 2003;90:385-93.
  • 5. Kim SH, Watts DC. In vitro study of edge-strength of provisional polymer-based crown and fixed partial denture materials. Dent Mater 2007;23:1570-3.
  • 6. Doan A, Karacaer O, Doan MD. Deiik Polimerizasyon Yöntemlerinin Farkl Konsantrasyonlarda Cam Fiberle Güçlendirilen Poli (Metil metakrilat) Protez Kaide Rezininin Transvers Dayanmna Etkisi. CÜ Di Hek Fak Der 2007;10:20-5.
  • 7. Kavrut R. Geçici Kuron - Köprü Materyallerinin Polietilen Ve Cam fiberle Güçlendirilmesinin Bükülme Direncine Etkisinin ncelenmesi. Erzurum: Atatürk Üniversitesi; 2007.
  • 8. Vallittu PK, Lassila VP, Lappalainen R. Acrylic resin-fiber composite--Part I: The effect of fiber concentration on fracture resistance. J Prosthet Dent 1994;71:607-12.
  • 9. Larson WR, Dixon DL, Aquilino SA, Clancy JM. The effect of carbon graphite fiber reinforcement on the strength of provisional crown and fixed partial denture resins. J Prosthet Dent 1991;66:816-20.
  • 10. Saygili G, Sahmali SM, Demirel F. The effect of placement of glass fibers and aramid fibers on the fracture resistance of provisional restorative materials. Oper Dent 2003;28:80-5.
  • 11. Kolbeck C, Rosentritt M, Behr M, Lang R, Handel G. In vitro study of fracture strength and marginal adaptation of polyethylene-fibre-reinforced-composite versus glassfibre- reinforced-composite fixed partial dentures. J Oral Rehabil 2002;29:668-74.
  • 12. Geerts GA, Overturf JH, Oberholzer TG. The effect of different reinforcements on the fracture toughness of materials for interim restorations. J Prosthet Dent 2008;99:461- 7.
  • 13. Vallittu PK, Vojtkova H, Lassila VP. Impact strength of denture polymethyl methacrylate reinforced with continuous glass fibers or metal wire. Acta Odontol Scand 1995;53:392-6.
  • 14. Stipho HD. Effect of glass fiber reinforcement on some mechanical properties of autopolymerizing polymethyl methacrylate. J Prosthet Dent 1998;79:580-4.
  • 15. Ekstrand K, Ruyter IE, Wellendorf H. Carbon/graphite fiber reinforced poly(methyl methacrylate): properties under dry and wet conditions. J Biomed Mater Res 1987;21:1065-80.
  • 16. Pereira CL, Demarco FF, Cenci MS, Osinaga PW, Piovesan EM. Flexural strength of composites: influences of polyethylene fiber reinforcement and type of composite. Clin Oral Investig 2003;7:116-9.
  • 17. Vallittu PK. Ultra-high-modulus polyethylene ribbon as reinforcement for denture polymethyl methacrylate: a short communication. Dent Mater 1997;13:381-2.
  • 18. Chiodera G, Gastaldi G, Millar BJ. Temperature change in pulp cavity in vitro during the polymerization of provisional resins. Dent Mater 2009;25:321-5.
  • 19. Feinberg E. Technique for making full-coverage provisional restorations on teeth with insufficient clinical crowns. N Y State Dent J 2010;76:22-6.
  • 20. Givens EJ, Jr., Neiva G, Yaman P, Dennison JB. Marginal adaptation and color stability of four provisional materials. J Prosthodont 2008;17:97-101.
  • 21. Pfeiffer P, Grube L. In vitro resistance of reinforced interim fixed partial dentures. J Prosthet Dent 2003;89:170-4.
  • 22. Aydin C, Yilmaz H, Caglar A. Effect of glass fiber reinforcement on the flexural strength of different denture base resins. Quintessence Int 2002;33:457-63.
  • 23. Fahmy NZ, Sharawi A. Effect of two methods of reinforcement on the fracture strength of interim fixed partial dentures. J Prosthodont 2009;18:512-20.
  • 24. Nohrstrom TJ, Vallittu PK, Yli-Urpo A. The effect of placement and quantity of glass fibers on the fracture resistance of interim fixed partial dentures. Int J Prosthodont 2000;13:72-8.
  • 25. Vallittu PK. Comparison of the in vitro fatigue resistance of an acrylic resin removable partial denture reinforced with continuous glass fibers or metal wires. J Prosthodont 1996;5:115-21.
  • 26. Uzun G, Hersek N, Tincer T. Effect of five woven fiber reinforcements on the impact and transverse strength of a denture base resin. J Prosthet Dent 1999;81:616-20.