Manyetik aljinat/perlit kompozit mikrokürelerin karakterizasyonu ve sulu çözeltiden Pb (II) ve Ni (II) iyonlarının uzaklaştırılmasında optimum şartların belirlenmesi

Sunulan çalışmanın amacı manyetik aljinat/perlit kompozit mikrokürelerin hazırlanması, karakterizasyonu ve sentezlenen mikrokürelerin sulu çözeltiden kurşun ve nikel ağır metal iyonlarının uzaklaştırılmasında kullanılabilirliğinin araştırılmasıdır. Mikrokürelerin ağır metal adsorpsiyon kapasitesi üzerine perlit konsantrasyonunun, başlangıç metal iyon derişiminin ve çözeltinin pH’nın etkileri araştırılmıştır. Demir oksit partikülleri basit çöktürme yöntemiyle, mikrokürelerin sentezinde iyonik jelasyon yöntemi kullanılmıştır. Demir oksit içeren mikrokürelere perlit eklenmesi ile mikrokürelerin su tutma kapasiteleri azalmıştır. SEM analizi mikrokürelerin küremsi yapıda ve yüzeyinin pürüzlü olduğunu göstermiştir. SEMEDX analizi manyetik aljinat/perlit mikrokürelerin C, O, Na, Al, Si, K, Cl ve Fe içerdiğini ortaya koymuştur. XRD analizi sentezlenen demir oksit tozunun Fe3O4 olduğunu belirtmiştir. TGA analizi perlit ilavesi ile mikrokürelerin termal dayanıklılıklarının arttığını ortaya koymuştur. Perlit/aljinat oranı=2 (a/a) olduğunda mikrokürelerin adsorpsiyon kapasitesi maksimuma ulaşmış fakat bu orandan fazla perlit ilavesi mikrokürelerin adsorpsiyon kapasitesinde azalmaya neden olmuştur.

Characterization of magnetic alginate/perlite composite microspheres and determination of optimum conditions for the removal of Pb (II) and Ni (II) ions from aqueous solution

The goal of present study is preparation, characterization of magnetic alginate/perlite composite microspheres and to investigate the usability of produced microspheres for the removal of lead and nickel ions from aqueous solution. The effect of perlite concentration, initial metal ion level and the pH of the solution on the heavy metal adsorption capacity of microspheres were investigated. Iron oxide particles were prepared by simple precipitation method. Ionic gelation method was utilized to synthesize the microspheres. Swelling studies showed that addition of perlite to iron oxide-containing micropsheres decreased the swelling degree of the microspheres. SEM analysis indicated that microspheres were almost spherical with rough surface. SEM-EDX showed that alginate/perlite microspheres composed of C, O, Na, Al, Si, K, Cl and Fe. TGA analysis indicated that incorporation of perlite improved the thermal properties of microspheres. Adsorption capacity of microspheres reached the maximum value when the perlite/alginate ratio=2 (wt./wt.), but then adding more than this value significantly decreased the adsorption capacity of microspheres.

___

  • X. Li, Y. Li and Z. Ye, “Preparation of macroporous bead adsorbents based on poly (vinyl alcohol)/chitosan and their adsorption properties for heavy metals from aqueous solution,” Chemical Engineering Journal, vol. 178, pp. 60- 68, 2011.
  • L. Zhou, Y. Wang, Z. Liu, and Q. Huang, “Characteristics of equilibrium, kinetics studies for adsorption of Hg (II), Cu (II), and Ni (II) ions by thiourea-modified magnetic chitosan microspheres,” Journal of Hazardous Materials, vol. 161, nol. 2, pp. 995-1002, 2009.
  • N. Gray, “Drinking Water Quality-Problems and Solutions” (Second Edition). Cambridge: University Press,1994.
  • K. Das, S. Das, and S. Dhundasi, “Nickel, its adverse health effects & oxidative stress”, Indian Journal of Medical Research, vol. 128, no. 4, pp. 412, 2008.
  • L. Charerntanyarak, “Heavy metals removal by chemical coagulation and precipitation”, Water Science and Technology, vol. 39, no. 10, pp. 135- 138, 1999.
  • G. Chen, “Electrochemical technologies in wastewater treatment”, Separation and purification Technology, vol. 38, no. 1, pp. 11-41, 2004.
  • A. Carreon-Alvarez, A. Herrera-Gonzalez, N. Casillas, R. Prado-Ramirez, M. EstarronEspinosa, V. Soto, W. de la Cruz, M. BarcenaSoto, and S. Gomez-Salazar, “Cu (II) removal from tequila using an ion-exchange resin”, Food Chemistry, vol. 127, no. 14, pp. 1503-1509, 2011.
  • M. Mohsen-Nia, P. Montazeri, and H. Modarress, “Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes”, Desalination, vol. 217, no. 1, pp. 276-281, 2007.
  • A. Sarı, M. Tuzen, D. Cıtak, and M. Soylak, “Adsorption characteristics of Cu (II) and Pb (II) onto expanded perlite from aqueous solution”, Journal of Hazardous Materials, vol. 148, no. 1, pp. 387-394, 2007.
  • R. Boopathy, “Factors limiting bioremediation technologies”, Bioresource Technology, vol. 74, no. 1, pp. 63-67, 2000.
  • R. Hamutoğlu, A. Dinçsoy, D. CansaranDuman, and S. Aras, “Biyosorpsiyon, adsorpsiyon ve fitoremediasyon yöntemleri ve uygulamaları”, Türk Hijyen ve Deneysel Biyoloji Dergisi, pp. 235, 2012.
  • A. Ngomsik, A. Bee, J. Siaugue, V. Cabuil, and G. Cote, “Nickel adsorption by magnetic alginate microcapsules containing an extractant”, Water Research, vol. 40, no. 9, pp. 1848-1856, 2006.
  • S. Babel, and T. Kurniawan, “Low-cost adsorbents for heavy metals uptake from contaminated water: a review”, Journal of Hazardous Materials, vol. 97, no. 1, pp. 219-243, 2003.
  • G. Crini, “Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment”, Progress in Polymer Science, vol. 30, no. 1, pp. 38-70, 2005.
  • K. Vijayalakshmi, T. Gomathi, S. Latha, T. Hajeeth, and P.N. Sudha, “Removal of copper(II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads”, Internaional Journal of Biological Macromolecules, vol. 82, no. 1, pp. 440-452, 2016.
  • T. Lu, T. Xiang, X.-L. Huang, C. Li , W.-F. Zhao, Q. Zhang, and C.-S. Zhao, “Postcrosslinking towards stimuli-responsive sodium alginate beads for the removal of dye and heavy metals”, Carbohydrate Polymers, vol. 133, no.1 1, pp. 587-595, 2015.
  • M. Esmat, A.A. Farghali, M.H. Kheder, and I.M. El-Sherbiniy, “Alginate-based nanocomposites for efficient removal of heavy metal ions”, Internaional Journal of Biological Macromolecules, vol. 102, no. 1, pp. 272-283, 2017.
  • W. Jung, B.-H. Jeon, D.-W. Cho, H.-S. Roh, Y. Cho, S.-J. Kim, and D.S. Lee, “Soptive removal of heavy metald with nano-sized carbon immobilized alginate beads”, Journal of Industrial and Enginnering Chemistry, vol. 26, no. 1, pp. 364-369, 2015.
  • S. Cataldo, D. Gianguzza, D. Milea, N. Muratore, and A. Pettignano, “Pb(II) adsorption by a novel activated carbon - alginate composite material. A kinetic and equilibrium study” Internaional Journal of Biological Macromolecules, vol. 92, no. 1, pp. 769–778, 2016.
  • D. Chen, W. Li, Y. Wu, Q. Zhu, Z. Lu, and G. Du, “Preparation and characterization of chitosan/montmorillonite magnetic microspheres and its application for the removal of Cr (VI)”, Chemical Engineering Journal, vol. 221, pp. 8-15, 2013.
  • M.M. Lakouraj, F. Mojerlou, and E.N. Zare, “Nanogel and superparamagnetic nanocomposite based on sodium alginate for sorption of heavy metal ions” Carbohydrate Polymers, vol. 106, no. 1, pp. 34-41, 2014.
  • H. Zhu, Y. Fu, R. Jiang, J. Yao, L. Xiao,and G. Zeng, “Optimization of Copper (II) Adsorption onto Novel Magnetic Calcium Alginate/Maghemite Hydrogel Beads Using Response Surface Methodology”, Industrial & Engineering Chemistry Research, vol. 53, no. 10, pp. 4059-4066, 2014.
  • M. Zamzow, and J. Murphy, “Removal of metal cations from water using zeolites”, Separation Science and Technology, vol. 27, no. 14, pp. 1969-1984, 1992.
  • K.G. Bhattacharyya, and S.S. Gupta, “Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review”, Advances in Colloid and Interface Science, vol. 140, no. 2, pp. 114-131, 2008.
  • A. Sarı, Ş G. ahnoğlu, and M. Tüzen, “Antimony (III) adsorption from aqueous solution using raw perlite and Mn-modified perlite: equilibrium, thermodynamic, and kinetic studies”, Industrial & Engineering Chemistry Research, vol. 51, no. 19, pp. 6877-6886, 2012.
  • M. Alkan, and M. Doğan, “Adsorption of copper (II) onto perlite”, Journal of Colloid and Interface Science, vol. 243, no. 2, pp. 280-291, 2001.
  • N. Tekin, E. Kadıncı, Ö. Demirbaş, M. Alkan, A. Kara, and M. Doğan, “Surface properties of poly (vinylimidazole)-adsorbed expanded perlite”, Microporous and Mesoporous Materials, vol. 93, no. 1, pp. 125-133, 2006.
  • M. Doğan, M. Alkan, and Ü. Çakir, “Electrokinetic properties of perlite”, Journal of Colloid and Interface Science, vol. 192, no. 1, pp. 114-118, 1997.
  • H. Zhu, Y. Fu, R. Jiang, J. Yao, L. Xiao, and G. Zeng, “Optimization of Copper (II) Adsorption onto Novel Magnetic Calcium Alginate/Maghemite Hydrogel Beads Using Response Surface Methodology”, Industrial & Engineering Chemistry Research, vol. 53, no. 10, pp. 4059-4066, 2014.
  • G.R. Mahdavinia, Z. Rahmani, S. Karami, and A. Pourjavadi, “Magnetic/pH-sensitive κcarrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and drug delivery”, Journal of Biomaterials Science, Polymer Edition, vol. 25, pp. 17, pp. 1891-1906, 2014.
  • H. Yan, Y. Feng, W. Hu, C. Cheng, R. Liu, C. Wang, J. Li, and Q. Lin, “Preparation and evaluation of alginate-chitosan-bentonite based beads for the delivery of pesticides in controlledrelease formulation”, Asian Journal of Chemistry, vol. 25, no. 17, pp. 9936, 2013.
  • C. Yuwei, and W. Jianlong, “Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu (II) removal”, Chemical Engineering Journal, vol. 168, no. 1, pp. 286-292, 2011.
  • A. Ely, M. Baudu, J.-P. Basly, and M.O.S.A.O. Kankou, “Copper and nitrophenol pollutants removal by Namontmorillonite/alginate microcapsules”, Journal of Hazardous Materials, vol. 171, no. 1, pp. 405- 409, 2009.
  • M. Cheong, and I. Zhitomirsky, “Electrodeposition of alginic acid and composite films”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 328, no. 1, pp. 73- 78, 2008.
  • B. Zhao, Y. Wang, H. Guo, J. Wang, Y. He, Z. Jiao, and M. Wu, “Iron oxide (III) nanoparticles fabricated by electron beam irradiation method”, Materials Science Poland, vol. 25, no. 4, pp. 1143- 1148, 2007.
  • A. Ngomsik, A. Bee, J. Siaugue, D. Talbot, V. Cabuil, and G. Cote, “Co (II) removal by magnetic alginate beads containing Cyanex 272”, Journal of Hazardous Materials, vol. 166, no. 2, pp. 1043- 1049, 2009.
  • G. Sheng, S. Yang, J. Sheng, D. Zhao, and X. Wang, “Influence of solution chemistry on the removal of Ni(II) from aqueous solution to titante nannotubes”, Chemical Engineering Journal, vol. 168, no. 1, pp. 178-182, 2011.
  • V.K. Gupta, S. Agarwal, and T.A. Saleh, “Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal”, Journal of Hazardous Materials, vol. 185, no. 1, pp. 17-23, 2011.
  • H. Shawky, “Improvement of water quality using alginate/montmorillonite composite beads”, Journal of Applied Polymer Science, vol. 119, no. 4, pp. 2371-2378, 2011.
  • A. Idris, N. Ismail, N. Hassan, E. Misran, and A. Ngomsik, “Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb (II) removal in aqueous solution”, Journal of Industrial and Engineering Chemistry, vol. 18, no. 5, pp. 1582-1589, 2012.
  • V. Tirtom, A. Dinçer, S. Becerik, T. Aydemir, and A. Çelik, “Comparative adsorption of Ni (II) and Cd (II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution”, Chemical Engineering Journal, vol. 197, pp. 379-386, 2012.
  • S. Hasan, A. Krishnaiah, T. Ghosh, D. Viswanath, V. Boddu, and E. Smith, “Adsorption of chromium (VI) on chitosan coated Perlite”, Separation Science and Technology, vol. 38, no. 15, pp. 3775-3793, 2003.
  • A. Pandey, D. Bera, A. Shukla, and L. Ray, “Studies on Cr (VI), Pb (II) and Cu (II) adsorption–desorption using calcium alginate as biopolymer”, Chemical Speciation and Bioavailability, vol. 19, no. 1, pp. 17-24, 2007.
  • W.W. Ngah, and S. Fatinathan , “Adsorption characterization of Pb (II) and Cu (II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies”, Journal of Environmental Management, vol. 91, no. 4, pp. 958-969, 2010.
  • N. Lazaridis, and C. Charalambous, “Sorptive removal of trivalent and hexavalent chromium from binary aqueous solutions by composite alginate–goethite beads”, Water Research, vol. 39, no. 18, pp. 4385-4396, 2005.
  • M. Torab-Mostaedi, H. Ghassabzadeh, M. Ghannadi-Maragheh, S. Ahmadi, and H. Taheri, “Removal of cadmium and nickel f rom aqueous solution using expanded perlite”, Brazilian Journal of Chemical Engineering, vol. 27, no. 2, pp. 299-308, 2010.