Kinetik enerji geri kazanım sistemlerinin elektrikli araçlarda kullanımının incelenmesi

Elektrikli araçlar çevreci özellikleri ve enerji etkinliği açısından alternatif ulaşım yöntemi olarak sunulmaktadır. Tek şarj ile gidilebilecek mesafenin kısa olması bu araçların yaygınlaşmasının önündeki önemli engellerden biridir. Elektrikli araçların menzilini uzatmak için depolama ve araç teknolojisi üzerine çalışmalar devam etmektedir. Bu çalışmalardan bir kısmı mevcut enerji kayıplarının azaltılarak aynı batarya kapasitesi ile daha uzun mesafe gidilmesini amaçlamaktadır. Araçlara uygulanan enerji geri kazanım sistemleri ile enerji tasarrufu sağlayan çalışmalar mevcuttur. Frenlemede kaybolan enerjinin geri kazanımı için kullanılan rejenaratif sistemler buna örnektir. Bu çalışma kapsamında frenleme esnasından kaybolan kinetik enerjinin geri kazanımı için bir elektrikli araçta simülasyon yapılmıştır. Simülasyon sonucunda şehir içi kullanım için KERS ile %25 civarında enerji tasarrufu sağlanabileceği görülmüştür.

Investigation of kinetic energy recovery systems usage in electric vehicles

Electric cars are seen alternative in transport from the viewpoint of environment and energy efficiency. Short range is one of the challenges facing prevent widespreading of these vehicles. Researches on storage systems and vehicle technology are carried in order to increase the range of electric vehicles. Some researches aim more distance to go with the same battery capacity by decreasing energy losses. Some researchers showed that energy conservation systems applicable to automobile could recover kinetic energy. One of the energy recovery systems is regenerative braking. In this study, a simulation was conducted to investigate recovered energy in an electric vehicle with kinetic energy recovery system. As a result, a 25% of energy saving for model electric vehicle was gathered by using kinetic energy recovery system under driving circumstances in a sample city cycle.

___

  • C.-H. Cheng and J.-X. Ye, “GA-based neural network for energy recovery system of the electric motorcycle,” Expert Syst. Appl., vol. 38, no. 4, pp. 3034–3039, 2011.
  • C. C. Chan, Modern Electric Vehicle Technology. Oxford University Press, 2001.
  • P. Cazzorla, M. Gorner, J. Teter, and W. Yi, “Global EV Outlook 2016, Beyond one million electric cars,” Paris, France, 2016.
  • J. Larminie and J. Lowry, Electric Vehicle Technology Explained. 2003.
  • J. Cibulka, “Kinetic Energy Recovery system by means of Flywheel Energy storage device,” Adv. Eng., vol. 3, no. 1, pp. 27–38, 2009.
  • R. Kapoor and C. M. Parveen, “Comparative study on various KERS,” in Proceedings of the World Congress on Engineering, 2013, vol. 3, pp. 3–5.
  • J. M. W. Whiting, “A regenerative braking system for d . c . railway traction,” p. 100710, 1979.
  • L. Pugi, M. Pagliai, A. Nocentini, G. Lutzemberger, and A. Pretto, “Design of a hydraulic servo-actuation fed by a regenerative braking,” Appl. Energy, vol. 187, pp. 96–115, 2017.
  • Y. Chen, L. Zhou, X. Ning, and C. Zhao, “Design of Hybrid Electric Bus on Regenerative Braking System,” vol. 301, pp. 333–337, 2013.
  • J. Walsh, T. Muneer, and A. N. Celik, “Design and analysis of kinetic energy recovery system for automobiles : Case study for commuters in Edinburgh,” pp. 1–12, 2013.
  • G. Yanan, “Research on Electric Vehicle Regenerative Braking System and Energy Recovery,” Int. J. Hybrid Inf. Technol., vol. 9, no. 1, pp. 81–90, 2016.
  • F. Wicks and K. Donnelly, “Modeling regenerative braking and storage for vehicles,” in Energy Conversion Engineering Conference, 1997. IECEC-97., Proceedings of the 32nd Intersociety, 1997, vol. 3, pp. 2030–2035.
  • Y.-P. Yang, J.-J. Liu, and T.-H. Hu, “An energy management system for a directly-driven electric scooter,” Energy Convers. Manag., vol. 52, no. 1, pp. 621–629, 2011.
  • S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez, and A. Emadi, “Energy storage systems for automotive applications,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2258–2267, 2008.
  • L. Hua, Z. Jian, X. Da, and M. Xiaojun, “Design for hybrid electric drive system of armored vehicle with two energy storage devices,” in Sustainable Power Generation and Supply, 2009. SUPERGEN’09. International Conference on, 2009, pp. 1–5.
  • K. Inoue, K. Ogata, and T. Kato, “Efficient power regeneration and drive of an induction motor by means of optimal torque derived by the variational method,” Electr. Eng. Japan, vol. 173, no. 1, pp. 41–50, 2010.
  • J. Van Mierlo, P. den Bossche, and G. Maggetto, “Models of energy sources for EV and HEV: fuel cells, batteries, ultracapacitors, flywheels and engine-generators,” J. Power Sources, vol. 128, no. 1, pp. 76–89, 2004.
  • A. Boretti, “Comparison of fuel economies of high efficiency diesel and hydrogen engines powering a compact car with a flywheel based kinetic energy recovery systems,” Int. J. Hydrogen Energy, vol. 35, no. 16, pp. 8417– 8424, 2010.
  • UNECE, “UN Vehicle Regulations - 1958 Agreement,” 1992. [Online]. Available: http://www.unece.org/trans/main/wp29/wp29r egs1-20.html. [Accessed: 06-Jun-2017].
  • A. Brooker, K. Haraldsson, T. Hendricks, V. Johnson, K. Kelly, B. Kramer, T. Markel, M. O’Keefe, S. Sprik, K. Wipke, and M. Zolot, “National Renewable Energy Laboratory: ADVISOR Advanced Vehicle Simulator Documentation,” 2013. .