Fuzzy inference systems for gas concentration estimation

Bu çalışmada, Mamdani ve Sugeno bulanık sonuç çıkarım sistemleri (BSÇS) kararlı hal sensor cevapları kullanılarak Totuen gazının konsantrasyon tahmini için kullanılmış ve sunulmuştur. Bir yapay sinir ağı (YSA) yapısıda ayrıca mukayese için kullanılmıştır.Gaz sensörü olarak Kuartz Kristal Mikrobalans tip sensor kullanılmıştır. BSÇS ve YSA ile yapılan konsantrasyon tahminlerinde kabul edilebilir performanslar elde edilmiştir. Sonuçlar gaz konsantrasyon tahmini için Sugeno BSÇS'nin Mamdani BSÇS'den daha iyi performans sağladığını göstermektedir. Sugeno BSÇS'nin tahmin sonuçlan YSA'nm tahmin sonuçlarına oldukça yakındır.

In this study, Mamdani's and Sugeno's fuzzy inference systems (FIS) is presented for the concentration estimation of the Toluene gas by using the steady state sensor response. An artificial Neural Network (ANN) structure is also used for comparison. The Quartz Crystal Microbalance (QCM) type sensors were used as gas sensors. Acceptable performances were obtained for the concentration estimation with FISs and ANN. The results show that Sugeno's FIS performs better than Mamdani's FIS for gas concentration estimation. The estimation results of Sugeno's FIS are very closer to estimation results of ANN.

___

[1]. Ho, M.H., Gullbault, G.G., Rietz, B.: Continuos Detection of Toluene in Ambient Air with a Coated Piezoelectric Crystal, Anal. Chem., 52(9), (1980)

[2]. Vaihinger, S., Gopel, W.: Multi - Component Analysis in Chemical Sensing in Sensors: A Comprehensive Survery Ed. W. Gopel, S. Hense, S.N. Zemel, VCH. Weinhe, New York, 2(1) (1991) 192

[3]. Temurtas, F., Tasaltin, C., Temurtaş, H., Yumuşak, N., Ozturk, Z.Z.: Fuzzy Logic and Neural Network Applications on the Gas Sensor Data : Concentration Estimation, Lecture Notes in Computer Science, Vol. 2869,(2003), 178-185

[4]. Temurtas, F., Tasaltin, C., Temurtas, H., Yumuşak, N., Ozturk, Z.Z., Determination of the Gas Concentrations Inside the Sensor Response Time by Using Artificial Neural Network, TAINN'03, The IJCI Proceedings (ISSN 1304-2386), Vol. 1 (1) (2003)

[5]. Szczurek, A., Szecowka, P.M., Licznerski, B.W.: Application of sensor array and neural networks for quantification of organic solvent vapours in air,, Sensors and Actuators B, Vol. 58 (1999) 427-432

[6]. Pardo, M., Faglia, G., Sberveglieri, G., Corte, M., Masulli, F., Riani, M.: A time delay neural network for estimation of gas concentrations in a mixture, Sensors and Actuators B, 65 (2000) 267-269

[7]. Mamdani, E.H., and Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies, 7 (1), (1975) 1-13

[8]. Takagi, T., Sugeno, M., IEE Transactions on Systems, Man, and Cybernetics, 15 (1985), 116-132

[9]. King, H. W.: Piezoelectric Sorption Detector, Anal. Chem., 36 (1964) 1735-1739.

[10]. Zhou, R., Josse, F., Gopel, W., Ozturk, Z. Z., Bekaroglu, A.: Phthalocyanines As Sensitive Materyals For Chemical Sensors, Applied Organometallic Chemistry, 10 (1996) 557-577

[11]. Riddick, J., Bunger, A., in Weissberger, A., (ed.): Organic Solvents' in Techniques of Chemistry, Volume 2, Wiley Interscience, (1970)

[12]. Yea, B., Osaki, T., Sugahara, K., Konishi, R.: The concentration estimation of inflammable gases with a semiconductor gas sensor utilizing neural networks and fuzzy inference, Sensors and Actuators-B, 41 (1997) 121-129

[13]. Hagan, M. T., Demuth, H. B., Beale, M. H.: Neural Network Design, Boston, MA: PWS Publishing, (1996)

[14], Fletcher, R., Reeves, C. M.: Function minimization by conjugate gradients, Computer Journal, vol. 7, (1964) 149-154

[15]. Dennis, J. E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs, NJ: Prentice-Hall, (1983).

[16]. Hagan, M. T., Menhaj, M.: Training feedforward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks, vol. 5 (6), (1994) 989-993.