Cıvata soğuk dövme işleminde kalıp ömrünün arttırılması: dövme kademe tasarımının etkisi

Bu çalışmada özel M10x32 dog-point cıvataların soğuk dövme işleminde meydana gelen kalıp hasarı Simufact.forming sonlu elemanlar simülasyon programı kullanılarak incelenmiş ve dövme kademe tasarımlarında değişimler yapılarak kalıplar üzerinde meydana gelen yüksek gerilme değerlerinin azaltılması amaçlanmıştır. Çalışmanın ilk kısmında cıvataya ait beş farklı dövme kademesinde meydana gelen malzeme akışı modellenerek belirlenmiş, kalıp kırılmasının yaşandığı dövme kademesinde oluşan kontak basınçları ile kalıp gerilmeleri tespit edilmiştir. Simülasyonlar cıvata kafa ve flanş kısmının dogpoint’in oluşturulduğu dövme kademesinde aynı anda şekillendirilmesi nedeniyle sabit kalıp üzerinde yüksek çekme gerilmesinin oluştuğunu ve kalıbın bu nedenle hasara uğradığını tespit etmiştir. Bu durumu engellemek amacıyla dog-point kısmı bir sonraki dövme kademesine alınmış ve hazırlık açısı 40°’ye düşürülmüştür. Buna ek olarak tek parça olan dövme kalıbı tasarımı iki parçalı tasarım ile değiştirilmiştir. Bu tasarımlar ile gerçekleştirilen simülasyonlar dövme kalıbındaki gerilmenin yaklaşık %70 oranında azaldığını göstermiştir. Son olarak yenilenen kalıplar ile yapılan üretim denemelerinde kalıp ömrünün 3.8 kat arttığı görülmüştür.

Tool life enhacement in cold bolt forging process: effect of forging stage design

In this paper, tool failure evolution in cold forging process of special M10x32 dog-point bolts was investigated with Simufact.forming finite element software. In the first part of the study, material flow in the five different forging stages were modeled and contact and tool stresses were determined. Simulations revealed that simultaneous forming of the flange, head and socket of the bolt with dog-point section causes excessive tensile stress evolution on the stationary die which leads to tool fracture. To prevent the failure, forming of dog-point section was shifted to further forging stage and preparation angle for dog-point was decreased to 40°. In addition, monolithic tool design was replaced with split insert design. Simulations carried out with these designs showed that tool stress was decreased about 70%. Finally, forging trials were also conducted with the updated tools and tool life was seen to increase about 3.8 times.

___

  • T.-W. Ku and B.-S. Kang, "Tool design for inner race cold forging with skew-type cross ball grooves," Journal of Materials Processing Technology, vol. 214, no. 8, pp. 1482-1502, 8// 2014.
  • K. Wagner, A. Putz, and U. Engel, "Improvement of tool life in cold forging by locally optimized surfaces," Journal of Materials Processing Technology, vol. 177, no. 1-3, pp. 206-209, 2006.
  • B. He, "Failure and Protective Measures on Punch & Die for Cold Extrusion," presented at the The 2nd International Conference on Computer Application and System Modeling, 2012.
  • K. Andreas and M. Merklein, "Influence of Surface Integrity on the Tribological Performance of Cold Forging Tools," Procedia CIRP, vol. 13, pp. 61-66, 2014.
  • S.-Y. Hsia and P.-Y. Shih, "Wear Improvement of Tools in the Cold Forging Process for Long Hex Flange Nuts," Materials, vol. 8, no. 10, pp. 6640-6657, 2015.
  • P. Skov-Hansena, J. G. Niels Bayb, and P. Brùndstedd, "Fatigue in cold-forging dies: tool life analysis," Journal of Materials Processing Technology, vol. 95, pp. 40-48, 1999.
  • S. Jhavar, C. P. Paul, and N. K. Jain, "Causes of failure and repairing options for dies and molds: A review," Engineering Failure Analysis, vol. 34, pp. 519-535, 12// 2013.
  • H. J. Bunge, K. Pöhlandt, A. E. Tekkaya, and D. Banabic, Formability of Metallic Materials: Plastic Anisotropy, Formability Testing, Forming Limits. Berlin: Springer, 2000.
  • M. Geiger, M. Hansel, and T. Rebhan, "Improving the fatigue resistance of cold forging tools by FE simulation and computer aided die shape optimization," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 206, pp. 143-150, 1992.
  • H. Berns, A. Melander, D. Weichert, N. Asnafi, C. Broeckmann, and A. GroβWeege, "A new material for cold forging tools," Computational Materials Science, vol. 11, no. 3, pp. 166-180, 5// 1998.
  • V. Vazquez, D. Hannan, and T. Altan, "Tool life in cold forging-an example of design improvement to increase service life," Journal of Materials Processing Technology, vol. 98, pp. 90-96, 2000.
  • U. Engel and U. Popp, "Microtexturing of Cold-Forging Tools - Influence on Tool Life," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 220, no. 1, pp. 27-33, 2006.
  • H. C. Lee, M. A. Saroosh, J. H. Song, and Y. T. Im, "The effect of shrink fitting ratios on tool life in bolt forming processes," Journal of Materials Processing Technology, vol. 209, no. 8, pp. 3766-3775, 2009.
  • T.-W. Ku and B.-S. Kang, "Tool design and experimental verification for multi-stage cold forging process of the outer race," International Journal of Precision Engineering and Manufacturing, vol. 15, no. 9, pp. 1995-2004, 2014.
  • S. Yurtdaş, U. İnce, C. Kılıçaslan, and H. Yıldız, "A Case Study for Improving Tool Life In Cold Forging: Carbon Fiber Composite Reinforced Dies," Research on Engineering Structures & Materials, 2016.
  • K. Pöhlandt, "Testing tool materials for bulk metal forming," in Materials testing for the metal forming industry: Springer, 1989, p. 176.