Barsak Mikrobiyotası ve Dayanıklılık Egzersizleri

Barsak mikrobiyotası; hormonal nitelikte çeşitli sinyal molekülleri üreterek, kan dolaşımı ile vücudun farklı bölgelerine ulaşabilen mikroorganizma kümeleridir. Mikrobiyota günümüzde birçok hastalıkla ilişkilendirilen güncel sağlık konularından birisidir. Mikrobiyotanın, egzersiz dâhil olmak üzere, çeşitli çevresel koşullar (beslenme, egzersiz, stres, doğum şekli) tarafından düzenlendiğine ait günümüzde giderek artan kanıta dayalı bilgiler vardır. Son yıllarda ise, mikrobiyotanın egzersiz performansını olumlu etkilediği belirtilmektedir. Özellikle egzersiz süresinin uzun ve yoğun olduğu dayanıklılık sporlarında sporcunun sağlıklı mikrobiyotaya sahip olmasının, enerji metabolizması, oksidatif stres ve hidrasyon durumu gibi kritik öneme sahip metabolizmaları olumlu etkilediği bildirilmiştir. Aynı zamanda, yorucu ve uzun süreli egzersize bağlı sporcuların sıklıkla yaşadıkları immün sistem baskılanmasında da iyileştirici etkilerinin olduğu belirtilmiştir. Bu şekilde sporcuların üst solunum yolu enfeksiyonu ve gastrointestinal sistem rahatsızlıklarının sıklık ve süresini azalttığına dair kuvvetli bilimsel veriler bulunmaktadır. Probiyotik kullanılması ile oluşan mikrobiyota değişiminin, inflamasyon ve redoks düzeylerini kontrol edebileceği, egzersiz yapan kişiler ve sporcuların; genel sağlık, performans ve enerji kullanılabilirliğini iyileştirmek için önemli bir beslenme stratejisi olabileceği belirtilmiştir. Mikrobiyotanın dayanıklılık egzersizi performansını etkilemesinin yanı sıra egzersiz yapımının da mikrobiyota zenginleştirilmesine katkıda bulunduğu bildirilmiştir. Önümüzdeki yıllarda egzersiz, immün sistem ve mikrobiyota ilişkisine odaklanan daha fazla araştırmanın yapılmasına gerek vardır. Bu derleme yazıda dayanıklılık egzersizi ve mikrobiyota ilişkisi güncel çalışmalarla incelenmiştir.

Gut Microbiota and Endurance Exercise

Gut microbiota; are hormonal clusters of microorganisms capable of producing various signaling molecules and reaching different regions of the body through blood circulation. Microbiota is one of the current health issues associated with many diseases today. There is increasing evidence-based knowledge that microbiota is regulated by a variety of environmental conditions (nutrition, exercise, stress, pregnancy ...), including exercise at the present time. In recent years, it has been reported that microbiota has a positive effect on exercise performance. It has been reported that the athlete has a healthy microbiota especially in the long and intense endurance sports during the exercise period, positively affecting metabolism with critical prescription such as energy metabolism, oxidative stress and hydration state.  At the same time, intense and long-term exercise-based athletes have often been shown to have positive effects on immunosuppression. In this way there is strong scientific evidence that athletes reduce the frequency and duration of upper respiratory tract infections and gastrointestinal system disorders. The use of probiotics to control microbial alteration, inflammation and redox levels, exercise practitioners and sportsmen; it may be an important nutrition strategy to improve overall health, performance and energy availability. In addition to affecting the endurance exercise performance of microbiota, exercise production has also been reported to contribute to microbiota enrichment. Further research is needed in the years to focus on exercise, the immune system and the microbiota relationship. Purpose of this review is summarize current literature studies that examine the relationship between endurance exercise and microbiota.
Keywords:

Endurance, exercise,

___

  • 10. Choi JJ, Eum SY, Rampersaud E, Daunert S, Abreu MT, Toborek M, et al. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect. 2013;121:725–30.
  • 11. Haywood BA, Black KE, Baker D, Mc Garvey J, Healey P, Brown RC. Probiotic supplementation reduces the duration and incidence of infections but not severity in elite rugby union players. Journal of Science and Medicine in Sport. 2014;17(4):356–360.
  • 12.Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63:1913-1920.
  • 13. Cairns SP. Lactic acid and exercise performance: culprit or friend? Sports Med. 2006;36:279–91.
  • 14. Opitz D, Lenzen E, Opiolka A, Redmann M, Hellmich M, Bloch W, et al. Endurance training alters basal erythrocyte MCT-1 contents and affects the lactate distribution between plasma and red blood cells in T2DM men following maximal exercise. Can J Physiol Pharmacol. 2015;93:413–9.
  • 15. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci. 2008;105:16767–72.
  • 16. Shephard RJ, Shek PN. Potential impact of physical activity and sport on the immune system—a brief review. Br J Sports Med. 1994;28:247– 55.
  • 17. Engebretsen L, Soligard T, Steffen K, Alonso JM, Aubry M, Budgett R, et al. Sports injuries and illnesses during the London Summer Olympic Games 2012. Br J Sports Med. 2013; 47(7):407-414.
  • 18. Soligard T, Steffen K, Palmer-Green D, Aubry M, Grant ME, Meeuwisse W, et al. Sports injuries and illnesses in the Sochi 2014 Olympic Winter Games. Br J Sports Med. 2015;49(7):441-447.
  • 19. Neville V, Gleeson M, Follan JP. Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes. Med Sci Sports Exerc. 2008;40:1228–1236.
  • 1. Mach N, Botella DF. Endurance exercise and gut microbiota: A review. JSHS. 2017;6(2):179-197.
  • 20. Jeukendrup AE, Vet-Joop K, Sturk A, Stegen JH, Senden J, Saris WH, et al. Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Clin Sci (Lond). 2000;98(1):47-55.
  • 21. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329-54.
  • 22. Xu J, Xu C, Chen X, Cai X, Yang S, Sheng Y, et al. Regulation of an antioxidant blend on intestinal redox status and major microbiota in early weaned piglets. Nutrition. 2014;30(5):584-9.
  • 23. Ghosh S, Dai C, Brown K, Rajendiran E, Makarenko S, Baker J, et al. Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am J Physiol Gastrointest Liver Physiol. 2011;301(81):39–49.
  • 24. Mardinoglu A, Shoaie S, Bergentall M, Ghaffari P, Zhang C, Larsson E, et al. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol. 2015;11:834.
  • 25. Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med Sci Sports Exerc. 2016;48(3):543-68.
  • 26. Musch MW, Wang Y, Claud EC, Chang EB. Lubiprostone decreases mouse colonic inner mucus layer thickness and alters intestinal microbiota. Dig Dis Sci. 2013;58:668–77. 86.
  • 27. Keely S, Kelly CJ, Weissmueller T, Burgess A, Wagner BD, Robertson CE, et al. Activated fluid transport regulates bacterial–epithelial interactions and significantly shifts the murine colonic microbiome. Gut Microbes. 2012;3:250–60.
  • 28. Redondo N, Gheorghe A, Serrano R, Nova E, Marcos A. HYDRAGUT study: influence of HYDRAtion status on the GUT microbiota and their impact on the immune system. The FASEB J 2015;29(Suppl. 1):593.
  • 29. Redondo N, Gheorghe A, Serrano R, Nova E, Marcos A. Hydragut study: influence of hydration status on the gut microbiota and their impact on the immune system. The FASEB Journal. 2015;29 (Suppl.1):593.
  • 2. Cronin O, Molloy MG, Shanahan F, Exercise, fitness, and the gut. Curr Opin Gastro. 2016;32(2):67-73.
  • 30. West NP, Pyne DB, Cripps AW, Hopkins WG, Eskesen DC, Jairath A, et al. Lactobacillus fermentum (PCC®) supplementation and gastrointestinal and respiratory-tract illness symptoms: a randomised control trial in athletes. Nutr J. 2011; 11(10):30.
  • 31. Pyne DB, West NP, Cox AJ, Cripps AW. Probiotics supplementation for athletes-clinical and physiological effects. Eur J Sport Sci. 2015;15(1):63-72.
  • 32. West NP, Horn PL, Pyne DB, Gebski VJ, Lahtinen SJ, Fricker PA, et al. Probiotic supplementation for respiratory and gastrointestinal illness symptoms in healthy physically active individuals. Clin Nutr. 2014;33(4):581-587.
  • 33. Salarkia N, Ghadamli L, Zaeri F, Sabaghian Rad L. Effects of probiotic yogurt on performance, respiratory and digestive systems of young adult female endurance swimmers: a randomized controlled trial. Med J Islam Repub Iran. 2013;27(3):141-6.
  • 34. Cox AJ, Pyne DB, Saunders PU, Fricker PA. Oral administration of the probiotic Lactobacillus fermentum VRI-003 and mucosal immunity in endurance athletes. Br J Sports Med. 2010;44(4):222-6.
  • 35. Gleeson M, Bishop NC, Oliveira M, Tauler P. Daily probiotic’s (Lactobacillus casei Shirota) reduction of infection incidence in athletes. Int J Sport Nutr Exerc Metab. 2011;21:55–64.
  • 36. Lamprecht M, Bogner S, Schippinger G, Steinbauer K, Fankhauser F, Hallstroem S, et al. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J Int Soc Sports Nutr. 2012;9(1):45.
  • 37. Shing CM, Peake JM, Lim CL, Briskey D, Walsh NP, Fortes MB, et al. Effects of probiotics supplementation on gastrointestinal permeability, inflammation and exercise performance in the heat. Eur J Appl Physiol. 2014;114(1):93-103.
  • 38. Jäger R, Shields KA, Lowery RP, De Souza EO, Partl JM, Hollmer C, et al. Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery. PeerJ. 2016;21;4:e2276.
  • 3. Cerdá B, Pérez M, Pérez-Santiago JD, Tornero-Aguilera JF, González-Soltero R, Larrosa M. Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health? Front Physiol. 2016;18(7):51.
  • 4. Bermon S, Petriz B, Kajėnienė A, Prestes J, Castell L, Franco OL. The microbiota: an exercise immunology perspective. Exerc Immunol Rev. 2015;21:70-79.
  • 5. McFadzean R. Exercise can help modulate human gut microbiota. Boulder, Co: University of Colorado; 2014. [Dissertation].
  • 6. Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One. 2014;9(3):e92193.
  • 7. Queipo-Ortuno MI, Seoane LM, Murri M, Pardo M, Gomez-Zumaquero JM, Cardona F, et al. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS One. 2013;8:e65465.
  • 8. Lambert JE, Myslicki JP, Bomhof MR, Belke DD, Shearer J, Reimer RA. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab. 2015;40:749–52
  • 9. Kang SS, Jeraldo PR, Kurti A, Miller ME, Cook MD, Whitlock K, et al. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener. 2014;9:36.